
IBM Z Decision Support
Version 1.9

Language Guide and Reference

IBM

GI13-4376-02

Note

Before using this information and the product it supports, read the information in “Notices” on page
193.

This edition applies to version 1, release 9 of IBM Z Decision Support (program number 5698-B06) and to all subsequent
releases and modifications until otherwise indicated in new editions.

Last updated: March 2021
© Copyright International Business Machines Corporation 1994, 2017.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
© Teracloud S.A. 2018, 2021.

Contents

Figures... xi

Tables..xvii

Preface...xix
Who should read this book..xix
What this book contains.. xix
Accessing publications online...xix
Accessibility... xix
Support information... xx
Conventions used in this book... xx

Typeface conventions... xx
Programming Interfaces Information... xxi
What's new this edition (March 2021).. xxi

Chapter 1. Introduction to the log collector.. 1
Collecting log data..1
Listing log data... 1
Maintaining data tables..2
Maintaining definitions...2

Ready-made definitions... 2
Summary of log collector statements... 2

Chapter 2. How to use the log collector language.. 5
Defining a log..7
Defining a record.. 7
Creating a data table..7
Defining an update... 8

Understanding the GROUP BY clause..8
Understanding the SET clause... 9

Performing log collector statements...10
Verifying record definitions.. 11

Collecting log data... 12
Collecting log data in batch..12
Collecting log data online...13

Chapter 3. Defining logs and records.. 15
Learning more about writing record definitions..15
Defining sections within a record.. 16

Defining a record containing a section...17
Defining multiple record types.. 18

Defining the records... 20
Changing log and record definitions..21

Using the DROP statement to delete a record definition.. 21
Using the ALTER RECORD statement...22

Chapter 4. Updating, storing, and managing data in tables....................................25
Storing data from multiple sources in a single data table.. 25

Creating the data table...25

 iii

Writing the update definition... 26
Storing data in multiple data tables.. 28

Defining a cascaded update...29
Managing data within tables..31

Deleting data.. 31
Changing data within tables...32

Chapter 5. Defining update definitions... 35
Using repeated sections within records..36

Defining a record with a repeated section...36
Defining updates for records with repeated sections... 37

Using nested sections within records... 39
Defining a record with nested sections... 42
Accessing data in nested sections...43

Understanding how to access data from records with sections...43
Obtaining a section occurrence number..46
Accessing specific sections in a record... 46

Determining averages..47
Determining percentiles.. 47
Distributing measurements... 49
Determining resource availability..50

Understanding the MERGE clause... 54
Comparing actual availability to scheduled availability.. 55

Changing and deleting update definitions.. 58
Using the DROP statement to delete an update definition... 58
Using the ALTER UPDATE statement... 59

Chapter 6. Collecting log data.. 61
Controlling data collection...61

Limiting the collection to certain records.. 61
Including and excluding data tables..61
Controlling when a COMMIT is made...62
Controlling buffer size.. 63
Handling table row overflows.. 63

Collecting data more than once...63
Collecting data from partially processed logs... 63

Verifying log data sets during data collection... 64

Chapter 7. How to read the syntax diagrams...65

Chapter 8. Elements of the log collector language...67
Characters..67
Tokens.. 67

Words..67
Delimited words... 67
String constants..68
Integer constants... 68
Floating-point constants.. 68
Delimiters... 69

Input lines.. 69
Example.. 69

Comments..69
Line comments... 69
Block comments...70

How your text is processed... 70
Example.. 70

Identifiers...71

iv

Table names... 71
Example.. 71

Statements...72
Using variables to modify your text...72

Chapter 9. Values and expressions... 73
Data types.. 73

Integers.. 73
Floating-point numbers..73
Character strings.. 73
Dates...74
Times.. 74
Timestamps..74
Truth values.. 74

Missing and invalid data...74
Null value.. 74
Unknown truth value.. 75
Error handling... 75

Some simple ways of specifying a value... 75
Specifying a value explicitly... 75
Specifying a value using an identifier.. 76
Obtaining the value of a variable..76
Obtaining the current date and time..77
Obtaining the user ID... 77

Date/time strings... 77
DATE function... 77
Automatic conversions...78

Labeled durations.. 78
Examples.. 79

Using operators..79
Arithmetic operations...79
Incrementing and decrementing date/time values...80
Concatenation of strings.. 81
Comparisons...81
Pattern matching.. 82
Logical operations.. 83

Testing for null... 83
Examples.. 83

Case expressions... 83
Examples.. 84

Lookup expressions... 85
How the result is obtained... 86
Which is the most specific pattern...86
Important... 87

Expressions..87
Precedence of operators..89

Conditions.. 89
Precedence of operators..89

Chapter 10. Functions..91
CHAR.. 91

Syntax... 91
Result..91
Example.. 91

DATE... 91
Syntax... 91
Result..92

 v

Example.. 92
DAY... 92

Syntax... 92
Result..92
Example.. 92

DAYS... 92
Syntax... 93
Result..93
Example.. 93
Usage notes.. 93

DAYTYPE.. 93
Syntax... 93
Result..94
Example.. 94

DIGITS..95
Syntax... 95
Result..95
Example.. 95

FIELD..95
Syntax... 95
Result..95
Example.. 95

FLOAT... 96
Syntax... 96
Result..96
Example.. 96

GETVAR.. 96
Syntax... 96
Result..97
Example.. 97

HOUR..97
Syntax... 97
Result..97
Example.. 97

INTEGER.. 97
Syntax... 97
Result..98
Example.. 98

INTERVAL... 98
Syntax... 98
Result..98
Example.. 98

IPCONV.. 98
Syntax... 99
Result..99
Example.. 99

LENGTH.. 99
Syntax... 99
Result..100
Example..100

MICROSECOND..100
Syntax... 100
Result..100
Example..100

MINUTE..100
Syntax... 100
Result..100
Example..100

vi

MONTH...101
Syntax... 101
Result..101
Example..101

PERIOD.. 101
Syntax... 101
Result..102
Example..103

ROUND... 103
Syntax... 103
Result..103
Example..104
Usage notes..104

SECOND... 104
Syntax... 104
Result..104
Example..104

SECTNUM...105
Syntax... 105
Result..105
Example..105

SUBSTR.. 105
Syntax... 105
Result..106
Example..106

TIME... 106
Syntax... 106
Result..106
Example..106

TIMESTAMP... 106
Syntax... 107
Result..107
Example..107

TRANSLATE..107
Syntax... 107
Result..108
Example..108

VALUE...108
Syntax... 108
Result..108
Example..108

WORD... 108
Syntax... 109
Result..109
Example..109

YEAR...109
Syntax... 109
Result..109
Example..109

Chapter 11. Log collector language statements...111
ALTER LOG... 111

Syntax... 111
Parameters... 112
Examples.. 113
Usage.. 113

ALTER RECORD.. 113

 vii

Syntax... 113
Parameters... 114
Examples.. 115
Usage..116

ALTER RECORDPROC...116
Syntax... 116
Parameters... 116
Examples.. 116
Usage..117

ALTER UPDATE...117
Syntax... 117
Parameters... 118
Examples.. 119
Usage..119

COLLECT...119
Syntax... 120
Parameters... 121
Examples.. 124
Usage..124

COMMENT ON..124
Syntax... 124
Parameters... 124
Examples.. 125
Usage..125

DEFINE LOG... 125
Syntax... 125
Parameters... 126
Examples.. 127

DEFINE PURGE.. 128
Syntax... 128
Parameters... 128
Examples.. 128
Usage..129

DEFINE RECORD..129
Syntax... 129
Parameters... 130
Examples.. 135
Usage..136

DEFINE RECORDPROC.. 136
Syntax... 136
Parameters... 137
Examples.. 137

DEFINE UPDATE.. 138
Syntax... 138
Parameters... 138
Examples.. 139
APPLY SCHEDULE clause... 139
DISTRIBUTE clause... 140
LET clause.. 141
GROUP BY clause...141
SET clause.. 142
MERGE clause.. 144
How data is obtained from Db2 tables.. 144
How data is stored in Db2 tables...145

DROP.. 145
Syntax... 145
Parameters... 145
Examples.. 146

viii

GENERATE INDEX..146
Syntax... 146
Parameters... 146
Example..146

GENERATE PARTITIONING... 147
Syntax... 147
Parameters... 147
Example..147

GENERATE TABLESPACE... 147
Syntax... 148
Parameters... 148
Example..148

LIST RECORD... 148
Syntax... 149
Parameters... 150
Examples.. 152

LOGSTAT...152
Syntax... 153
Parameters... 153
Example..153

PURGE..153
Syntax... 154
Parameters... 154
Example..154
Usage..154

RECALCULATE..155
Syntax... 155
Parameters... 156
Example..158
Usage..158

SET... 158
Syntax... 159
Parameters... 159
Examples.. 159
Usage..159

Chapter 12. Report definition language guide... 161
Introducing the report definition language...161
Implementing the report definition language...161

Getting started with the report definition language..162
Writing a group definition...163
Writing a report definition.. 163
Storing report definitions... 164
Generating reports... 165

Report definition language elements..165
Input format... 165
Identifiers... 165
Character string constants...166

Report definition language statements...166
DEFINE GROUP.. 167
DEFINE REPORT...168
DROP GROUP... 170
DROP REPORT.. 171

Chapter 13. Log and record procedures.. 173
Specifying log and record procedures.. 174
Calling log and record procedures.. 174

 ix

Calling assembler procedures...175
Using LANGUAGE ASM interface... 175
Using LANGUAGE ASML interface... 176

Calling C procedures..177
Using LANGUAGE C interface.. 177

Example log procedures..180
Example C log procedure... 180
Example Assembler log procedure..182

Specifying JCL and parameters...186
JCL for the log collector language... 186
JCL for the report definition language... 187

Appendix A. Support information... 191
Contacting IBM Support.. 191

Notices..193
Trademarks.. 194

Bibliography.. 195
IBM Z Decision Support publications..195

Glossary.. 197

Index.. 201

x

Figures

1. DEFINE LOG statement... 7

2. DEFINE RECORD statement..7

3. Creating a Db2 data table..8

4. DEFINE UPDATE statement.. 8

5. Example of GROUP BY and SET processing..9

6. Contents of STATSDEF data set.. 10

7. JCL for storing log and record definitions...10

8. LIST RECORD statement... 11

9. JCL for listing records..11

10. Messages resulting from LIST RECORD statement execution...11

11. Records listed by the LIST RECORD statement... 12

12. JCL used to collect log data.. 12

13. Messages resulting from COLLECT statement execution.. 13

14. Record definition for R_REC record type..15

15. Defining the R_REC using defaults... 16

16. Structure of the SUB_REC record and SUB_1 section... 17

17. Defining a record with a section... 18

18. Contents of RWINFO.LOG data set... 20

19. Defining multiple records..21

20. Using the DROP statement to redefine a record.. 22

21. Sample record definition...23

22. Changing a record definition...23

23. Definitions used in RWINFO.LOG..25

 xi

24. Creating the DRL.STATS_H data table.. 26

25. Creating multiple update definitions for a single data table..27

26. Processing two update definitions... 28

27. Creating a summary data table...29

28. Updating a data table using information from another data table.. 29

29. Cascaded update process...30

30. Messages resulting from data collection for cascaded update... 30

31. Using the DEFINE PURGE statement... 31

32. Using the PURGE statement... 31

33. Using the PURGE statement... 31

34. Using the RECALCULATE statement... 32

35. Deleting a row from a data table.. 33

36. Inserting a row into a data table...33

37. Calculating averages... 35

38. A record containing a repeated section..36

39. Defining a record with a repeated section..37

40. DEFINE UPDATE statement to access data in the record stem...38

41. DEFINE UPDATE statement to access data in a repeated section.. 39

42. Example of records containing nested records..41

43. Defining a record with nested sections.. 42

44. DEFINE UPDATE statement to access nested sections in a record...43

45. Example of a record with different kinds of sections...43

46. Data available for collection, depending on SECTION clause... 45

47. Tree structure of a record with repeated sections...45

48. Result of SECTNUM for different internal records... 46

xii

49. Calculating the 95th percentile.. 48

50. Creating an update definition for measurement distribution.. 49

51. Splitting the interval at one-hour boundaries.. 50

52. Log file containing RES_DATA records..52

53. Availability of DBSERV1 between 00.00 and 24.00 on June 23, 2018...52

54. Using the MERGE clause... 54

55. Merging of intervals derived from the records... 55

56. Status of the resource and the schedule for June 22, 2018... 56

57. Using the APPLY SCHEDULE clause..56

58. Modifying an update definition using the DROP statement...59

59. Using the ALTER UPDATE statement.. 59

60. Using the WHERE clause on the COLLECT statement..61

61. Using the INCLUDE clauses on the COLLECT statement... 62

62. Using the EXCLUDE clauses on the COLLECT statement...62

63. Using the percent sign (%)..62

64. Using the COMMIT AFTER clause of the COLLECT statement...62

65. Using the BUFFER clause of the COLLECT statement..63

66. Using the REPROCESS keyword..63

67. Using the HEADER, TIMESTAMP, FIRST RECORD, and LAST RECORD clauses of the DEFINE LOG
statement... 64

68. Example of DRLSYS.DAY_OF_WEEK table.. 94

69. Example of DRLSYS.SPECIAL_DAY table... 94

70. Example of a record containing nested sections... 96

71. Example of DRLSYS.PERIOD_PLAN table.. 102

72. DRLSYS.DAY_OF_WEEK table... 103

73. DRLSYS.SPECIAL_DAY table.. 103

 xiii

74. Example of a record with nested sections... 105

75. ALTER LOG statement...113

76. ALTER RECORD statement..115

77. ALTER RECORDPROC statement.. 116

78. ALTER UPDATE statement.. 119

79. COLLECT statement.. 124

80. COMMENT ON statement... 125

81. DEFINE LOG statement.. 128

82. Example of the DEFINE PURGE statement.. 129

83. Example of a DEFINE RECORD statement... 136

84. DEFINE RECORDPROC statement..138

85. DEFINE UPDATE statement..139

86. DROP statement... 146

87. GENERATE INDEX statement... 146

88. GENERATE PARTITIONING statement.. 147

89. GENERATE TABLESPACE statement...148

90. LIST RECORD statement...152

91. Messages from the LIST RECORD statement...152

92. Results from the LIST RECORD statement...152

93. LOGSTAT statement.. 153

94. Messages from the LOGSTAT statement.. 153

95. PURGE statement... 154

96. RECALCULATE statement... 158

97. SET statement...159

98. Tabular report produced from DRL.RWSTAT..162

xiv

99. Graphic report produced from DRL.RWSTAT... 162

100. Using the DEFINE GROUP statement...163

101. Using the DEFINE REPORT statement for a tabular report... 163

102. Using the DEFINE REPORT statement for a chart... 164

103. JCL for storing report definitions in batch..164

104. DEFINE GROUP statement...167

105. DEFINE REPORT statement... 170

106. DROP GROUP statement.. 171

107. DROP REPORT statement...171

108. Processing for log and record procedures... 173

109. Defining a log procedure...174

110. Defining a record procedure...174

111. Supplying a parameter using the PARM option... 175

112. Sample JCL for linking the DRL2CTOP module..177

113. Sample JCL for the log collector.. 186

114. JCL for defining reports in batch.. 188

 xv

xvi

Tables

1. Structure of records containing data about read and write errors...5

2. Contents of RWSTAT.EXAMPLE (in hexadecimal)... 5

3. Contents of data table after data collection... 6

4. Contents of DRL.RWSTAT after data collection.. 13

5. Structure of a record containing a section..17

6. Structure of Type A records in RWINFO.LOG log data set..19

7. Structure of Type B records in RWINFO.LOG log data set... 19

8. Contents of DRL.STATS_H data table after collecting log data..28

9. Contents of DRL.STATS_D after collecting log data... 31

10. Contents of DRL.STATS_H before the RECALCULATE statement is executed...32

11. Contents of DRL.STATS_H after the RECALCULATE statement is executed..32

12. Contents of DRL.CPUTAB after data collection.. 35

13. Structure of a record containing a repeated section..36

14. Examples of records with repeated section...37

15. The accessible fields when SECTION is not specified... 38

16. Contents of DRL.TOTAL after data collection... 38

17. Internal records generated as a result of specifying SECTION SUBIO... 39

18. Contents of DRL.BLOCK after data collection.. 39

19. Structure of a record containing nested sections.. 39

20. Contents of DRL.PROERR after data collection..42

21. Internal records generated for nested repeated section...43

22. Contents of CPU_INFO records.. 47

23. Contents of DRL.RTIME...48

 xvii

24. CPU_IN records containing data to be distributed.. 49

25. Contents of DRL.DIST after data collection... 50

26. Layout of Type A records (RES_DATA_A)... 51

27. Layout of Type B records (RES_DATA_B)... 51

28. Layout of Type C records (RES_DATA_C)..51

29. Data table DRLAVAIL_STATUS: an example of availability data..52

30. Interval type codes for resource availability..53

31. Example of a schedule in DRLSYS.SCHEDULE table..55

32. Temporary internal table created by APPLY SCHEDULE..57

33. Contents of the DRL.AVAIL_IN_SCHEDULE table after data collection..58

34. Fields that are common to all records in SUB_LOG... 64

35. Logical operation NOT...83

36. Logical operations AND and OR..83

37. Field formats... 132

38. Table space type... 147

39. Contents of DRL.RWSTAT data table.. 162

40. Input and output of log and record procedures...179

xviii

Preface

The Language Guide and Reference is a user's guide and reference book for the IBM Z Decision Support
log collector language and report definition language. It describes how to use these languages.

Note: To use the report definition language, you must install QMF on your system.

Who should read this book
The Language Guide and Reference is for IBM Z Decision Support administrators and performance
analysts, or programmers who are responsible for maintaining system log data and reports. To understand
this book, you should be familiar with Structured Query Language (SQL) and Db2®.

What this book contains
This book is a guide to understanding and customizing IBM Z Decision Support to bring maximum benefit
to your organization and to users. The book contains the following information:
Guide to the log collector language

Introduces the IBM Z Decision Support log collector and describes how to use its log collector
language to define and manage logs, records, tables, and updates.

Reference to the log collector language
Presents the reference information for each element, function, and statement of the IBM Z Decision
Support log collector language. Each reference contains a syntax diagram, a description, and a simple
example of usage. For more information, refer to Chapter 7, “How to read the syntax diagrams,” on
page 65.

Guide to the report definition language
Describes how to use the IBM Z Decision Support report definition language to define reports and
report groups to IBM Z Decision Support.

Reference to the report definition language
Presents the reference information for the report definition language statements.

Log and record procedures
Provides information about using the log and record procedures, using the JCL to submit batch jobs,
and how to obtain support for IBM software products.

Glossary and index
Lists in alphabetical order, terms with definitions and page references.

Accessing publications online
Publications for this and all other IBM products, as they become available and whenever they are
updated, can be viewed on the IBM Knowledge Center website where you can also download the
associated pdf.

https://www.ibm.com/support/knowledgecenter/SSH53X

Accessibility
Accessibility features help users with a physical disability, such as restricted mobility or limited vision, to
use software products successfully. With this product, you can use assistive technologies to hear and
navigate the interface. You can also use the keyboard instead of the mouse to operate all features of the
graphical user interface.

For additional information, see the Accessibility Appendix in the Administration Guide and Reference.

© Copyright IBM Corp. 1994, 2017 xix

https://www.ibm.com/support/knowledgecenter/SSH53X

Support information
If you have a problem with your IBM software, you want to resolve it quickly. IBM provides the following
ways for you to obtain the support you need:

• Searching knowledge bases: You can search across a large collection of known problems and
workarounds, Technotes, and other information.

• Obtaining fixes: You can locate the latest fixes that are already available for your product.
• Contacting IBM Software Support: If you still cannot solve your problem, and you need to work with

someone from IBM, you can use a variety of ways to contact IBM Software Support.

For more information about these three ways of resolving problems, see Appendix A, “Support
information,” on page 191.

Conventions used in this book
This guide uses several conventions for special terms and actions, operating system-dependent
commands and paths, and margin graphics.

The following terms are used interchangeably throughout this book:

• MVS, OS/390, and z/OS.
• OPC, OPC/ESA, Tivoli Workload Scheduler for z/OS, and TWS.
• TCP/IP and TCP/IP for z/OS.
• VM and z/VM.
• WebSphere MQ for z/OS and MQSeries.

Typeface conventions
This guide uses the following typeface conventions:

Bold

• Lowercase commands and mixed case commands that are otherwise difficult to distinguish from
surrounding text

• Interface controls (check boxes, push buttons, radio buttons, spin buttons, fields, folders, icons, list
boxes, items inside list boxes, multicolumn lists, containers, menu choices, menu names, tabs,
property sheets), labels (such as Tip, and Operating system considerations)

• Column headings in a table
• Keywords and parameters in text

Italic

• Citations (titles of books, diskettes, and CDs)
• Words defined in text
• Emphasis of words (words as words)
• Letters as letters
• New terms in text (except in a definition list)
• Variables and values you must provide

Monospace

• Examples and code examples
• File names, programming keywords, and other elements that are difficult to distinguish from

surrounding text
• Message text and prompts addressed to the user
• Text that the user must type

Preface

xx Preface

• Values for arguments or command options

Programming Interfaces Information
This book is intended to help users use the languages provided by IBM Z Decision Support.

This book also documents Product-sensitive Programming Interfaces and Associated Guidance
Information provided by IBM Z Decision Support.

Product-sensitive programming interfaces allow the customer installation to perform tasks such as
diagnosing, modifying, monitoring, repairing, tailoring, or tuning of IBM Z Decision Support. Use of such
interfaces creates dependencies on the detailed design or implementation of the IBM software product.
Product-sensitive programming interfaces should be used only for these specialized purposes. Because of
their dependencies on detailed design and implementation, it is to be expected that programs written to
such interfaces may need to be changed in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interfaces and Associated Guidance Information is identified where it
occurs, by an introductory statement to a chapter or section.

What's new this edition (March 2021)
The following changes implemented with the PTF for APAR PH29633.

Updated Log collector language statements: Recalculate
Updated the note for Recalculate “RECALCULATE” on page 155
Updated the syntax by adding BUFFER SIZE “Syntax” on page 155
Added new parameter “Parameters” on page 156

Technical changes are marked in the PDF with a vertical bar in the margin to the left of the change.

Changes in the previous edition
This edition is an update to the previous edition of the same book. Changes in this edition relate to IBM Z
Decision Support V1.9.0 enhancements and subsequent APARs. They include updates to the syntax and
parameter descriptions for the following APAR:
PH18950

COLLECT statement:

• “COMMIT AFTER” on page 123
• “FULL STATISTICS AFTER integer COMMITS” on page 123

PDF only: Except for editorial changes, updates to this edition are marked with a vertical bar [|] to the left
of the change.

Preface

Preface xxi

Preface

xxii IBM Z Decision Support : Language Guide and Reference

Chapter 1. Introduction to the log collector

IBM Z Decision Support is a reporting system that collects performance data logged by computer
systems, summarizes the data, and presents it in a variety of forms for use in systems management. IBM
Z Decision Support consists of a base product and several optional features.

The central part of IBM Z Decision Support is a program called the log collector that reads performance
data, organizes that data, and stores it in a Db2 database. You control the log collector with instructions
written in the log collector language. Each instruction is a statement in the language.

This topic provides an overview of the log collector and its language.

Collecting log data

About this task
Performance data about your system is obtained from sequential data sets such as those written by
system management facilities (SMF) under MVS™ or by Information Management System (IMS). These
data sets are called log data sets or logs.

The main function of the log collector is to read data from the logs and store it in Db2 tables, called data
tables. This process is called collecting log data. The log collector can perform extensive processing on
the data before storing it, such as:

• Grouping data by hour, day, or month.
• Computing sums, maximum or minimum values, averages, or percentiles.
• Calculating resource availability.

The purpose of this processing is to transform large amounts of data into useful information. The volume
of data stored in the database is usually much smaller than the volume of data read from the log.

To collect log data, you use the DEFINE LOG and DEFINE RECORD statements to describe the log to be
processed and, in particular, the layout of records in the log. In addition, you use the DEFINE UPDATE
statement to specify the processing to be performed on the data from the log and how to update data
tables with the result.

When the log collector executes the DEFINE LOG, DEFINE RECORD, and DEFINE UPDATE statements, it
stores the information contained in these statements. The log, records, and update process then become
defined to the log collector. The log collector stores the definitions of the log, records, and update
process, not the statements themselves.

Having defined the log, records, and update process, you can collect data from the log using the COLLECT
statement. When the log collector executes this statement, it retrieves the stored definitions and
performs the data collection specified by those definitions.

You can use the stored definitions any number of times to collect data from any number of log data sets,
as long as the definitions properly describe the data sets and the required processing. Typically, you
define the log, records, and update process only once, when installing IBM Z Decision Support. You then
use the stored definitions to periodically collect performance data generated by your installation.

Listing log data

About this task
You might need to examine the contents of a log data set without updating the data tables. If you have
defined the log and its records to the log collector, you can use the LIST RECORD statement. When the
log collector executes this statement, it uses the stored log and record definitions to interpret the log

Introduction to the log collector

© Copyright IBM Corp. 1994, 2017 1

data, then formats the data as specified by the LIST RECORD statement. You can specify the result to be
a printable file or a file in the integration exchange format (IXF).

To count the number of records for each record type contained in the log, use the LOGSTAT statement.

Maintaining data tables

About this task
Not all performance data is kept indefinitely; it is discarded when no longer useful. You might, for
example, discard daily statistics when they are one month old and monthly statistics when they are one
year old.

You can use the log collector to discard old data. The basic principle is the same as for collecting data. You
store the definition of the job to be done, and then repeatedly use the stored definition to perform that
job.

Using the DEFINE PURGE statement, you specify a purge condition for a data table. The condition
identifies the data to be discarded, depending upon the current date and time. When the log collector
executes this statement, it stores the purge condition, which becomes defined to the log collector. Having
defined the purge condition for one or more tables, you can discard old data using the PURGE statement.
When the log collector executes this statement, it retrieves the stored purge conditions and purges the
tables based on those conditions.

Occasionally, data entered into a data table is incorrect or the data table is damaged. To repair the data,
you can use SQL statements executed from Query Management Facility (QMF) or the log collector. You
can also use the RECALCULATE statement to alter data stored by the log collector.

Maintaining definitions

About this task
The main principle of using the log collector is that you must define the log, records, update process, and
purge conditions only once. Having defined them, you can use the stored definitions repeatedly for
production runs.

Sometimes, however, you might need to change the stored definitions. For example, you might install a
new version of a product that generates slightly different records in its log, or you might decide to collect
more information.

The log collector language includes several ALTER statements for modifying stored definitions. You can
also delete an entire stored definition using the DROP statement, and then store a modified definition
using one of the DEFINE statements.

You can document the stored definitions by adding comments to them using the COMMENT ON statement.
When you display the definitions online using the administration dialog, you see the comments you
stored.

Ready-made definitions
IBM Z Decision Support provides definitions for most of the standard IBM logs. These definitions are
provided in the form of DEFINE LOG and DEFINE RECORD statements. You can use these definitions as
they are, or modify them for your needs. You can also use them as a pattern for creating your own
definitions.

The IBM Z Decision Support features also provide many table and update definitions that you can use.

Summary of log collector statements
The log collector language consists of these statements:

Introduction to the log collector

2 IBM Z Decision Support : Language Guide and Reference

• Definition statements

– DEFINE LOG
– DEFINE PURGE
– DEFINE RECORD
– DEFINE RECORDPROC
– DEFINE UPDATE
– ALTER LOG
– ALTER RECORD
– ALTER RECORDPROC
– ALTER UPDATE
– SET
– DROP
– COMMENT ON

• Log processing statements

– COLLECT
– LIST RECORD
– LOGSTAT

• Table maintenance statements

– PURGE
– RECALCULATE

• Other statements

– SQL

Introduction to the log collector

Chapter 1. Introduction to the log collector 3

Introduction to the log collector

4 IBM Z Decision Support : Language Guide and Reference

Chapter 2. How to use the log collector language

This topic uses a simple example to describe how to use the log collector language.

In this scenario you want to determine how many read and write errors are produced per hour by three
applications; APPL1, APPL2, and APPL3. These applications write information about read and write errors
to a log data set called RWSTAT.EXAMPLE. The applications update this data set hourly.

You want to collect data from RWSTAT.EXAMPLE, process it, and store the result in a Db2 data table.

Table 1 on page 5 shows the structure of the records in RWSTAT.EXAMPLE.

Table 1. Structure of records containing data about read and write errors

Field Name Offset Length Data format Description

A_NAME 0 10 Character string Contains the name of the application
writing to this data set (APPL1, APPL2, or
APPL3)

DATE 10 4 Packed decimal in the
idd:break>format
0cyydddF

Contains the date, where:
c

Century
yy

Year within the century
ddd

Day within the year

TIME 14 6 Character string in the
idd:break>format
hhmmss

Contains the time, where:
hh

Hour
mm

Minute
ss

Second

R_ERR 20 4 Binary The number of read errors

W_ERR 24 4 Binary The number of write errors

Table 2 on page 5 shows the data (in hexadecimal) contained in RWSTAT.EXAMPLE.

Table 2. Contents of RWSTAT.EXAMPLE (in hexadecimal)

A_NAME DATE TIME R_ERR W_ERR

X'C1D7D7D3F1' X'0093001F' X'F0F1F0F0F0F1' X'00000003' X'00000005'

X'C1D7D7D3F2' X'0093001F' X'F0F1F0F0F0F2' X'00000001' X'00000003'

X'C1D7D7D3F3' X'0093001F' X'F0F1F0F0F0F3' X'00000002' X'00000000'

X'C1D7D7D3F1' X'0093001F' X'F0F2F0F0F0F1' X'00000000' X'00000000'

X'C1D7D7D3F2' X'0093001F' X'F0F2F0F0F0F2' X'00000002' X'00000001'

X'C1D7D7D3F3' X'0093001F' X'F0F2F0F0F0F3' X'00000005' X'00000003'

X'C1D7D7D3F1' X'0093001F' X'F0F3F0F0F0F1' X'00000004' X'00000006'

How to use the log collector language

© Copyright IBM Corp. 1994, 2017 5

Table 2. Contents of RWSTAT.EXAMPLE (in hexadecimal) (continued)

A_NAME DATE TIME R_ERR W_ERR

X'C1D7D7D3F2' X'0093001F' X'F0F3F0F0F0F2' X'00000001' X'00000003'

X'C1D7D7D3F3' X'0093001F' X'F0F3F0F0F0F3' X'00000002' X'00000002'

X'C1D7D7D3F1' X'0093001F' X'F0F4F0F0F0F1' X'00000002' X'00000006'

X'C1D7D7D3F2' X'0093001F' X'F0F4F0F0F0F2' X'00000000' X'00000000'

X'C1D7D7D3F3' X'0093001F' X'F0F4F0F0F0F3' X'00000004' X'00000005'

X'C1D7D7D3F1' X'0093001F' X'F0F5F0F0F0F1' X'00000001' X'00000006'

X'C1D7D7D3F2' X'0093001F' X'F0F5F0F0F0F2' X'00000004' X'00000007'

X'C1D7D7D3F3' X'0093001F' X'F0F5F0F0F0F3' X'00000002' X'00000004'

X'C1D7D7D3F1' X'0093001F' X'F0F6F0F0F0F1' X'00000001' X'00000001'

X'C1D7D7D3F2' X'0093001F' X'F0F6F0F0F0F2' X'00000004' X'00000000'

X'C1D7D7D3F3' X'0093001F' X'F0F6F0F0F0F3' X'00000003' X'00000005'

Table 3 on page 6 shows the results you want to obtain when you collect data from RWSTAT.EXAMPLE.

Table 3. Contents of data table after data collection

T_DATE T_HOUR RD_ERR WR_ERR TOT_ERR

2019-01-01 1 6 8 14

2019-01-01 2 7 4 11

2019-01-01 3 7 11 18

2019-01-01 4 6 11 17

2019-01-01 5 7 17 24

2019-01-01 6 8 6 14

The data table contains these fields:

T_DATE
Date the read and write errors occurred.

T_HOUR
Hour within the date the read and write errors occurred.

RD_ERR
Total number of read errors generated per hour.

WR_ERR
Total number of write errors generated per hour.

TOT_ERR
Combined total of read and write errors generated per hour.

To collect log data and produce the data table in Table 3 on page 6, you must define to the log collector:

• The location and structure of the source data
• How to process that data
• How to store the results in a data table

You write these definitions in the log collector language, and then use the log collector to store the
definitions.

How to use the log collector language

6 IBM Z Decision Support : Language Guide and Reference

You must also create the data table using SQL.

Defining a log
Figure 1 on page 7 shows the DEFINE LOG statement used to define RWSTAT.EXAMPLE to the log
collector.

-- Define RWSTAT log type to IBM Z Decision Support
DEFINE LOG RWSTAT;
COMMENT ON LOG RWSTAT IS 'Log definition for RWSTAT'

Figure 1. DEFINE LOG statement

In Figure 1 on page 7, you identified the log by specifying a name for the log (RWSTAT). Using the
COMMENT ON statement, you also specified a description for the log, which appears when you list the log
online using the administration dialog. For more information about the administration dialog, refer to the
Administration Guide and Reference.

Defining a record
To define records to IBM Z Decision Support, use the DEFINE RECORD statement in Figure 2 on page 7.

-- Define R_REC record type to IBM Z Decision Support
DEFINE RECORD R_REC IN LOG RWSTAT
 FIELDS
 (A_NAME OFFSET 0 LENGTH 10 CHAR,
 DATE OFFSET 10 LENGTH 4 DATE(0CYYDDDF),
 TIME OFFSET 14 LENGTH 6 TIME(HHMMSS),
 R_ERR OFFSET 20 LENGTH 4 BINARY,
 W_ERR OFFSET 24 LENGTH 4 BINARY);
COMMENT ON RECORD R_REC IS 'Definition of R_REC record in RWSTAT';

Figure 2. DEFINE RECORD statement

In Figure 2 on page 7, you identified the record (using the name R_REC) and specified that it occurs in the
RWSTAT log. Then, you identified each of the fields in the record. For each field, you specified the name,
where it occurs in the record, the length, and the format. Consider this field description:

R_ERR OFFSET 20 LENGTH 4 BINARY,

The field called R_ERR begins at byte 20 of the R_REC record. It is 4 bytes long and contains data in a
binary format.

You define the log and record to the log collector by executing these statements. See “Performing log
collector statements” on page 10 for more information about executing log collector statements.

Creating a data table
To store data from R_REC records into a data table, you must create the table using SQL. You can issue
SQL statements from QMF. For more information about using QMF to create a Db2 data table, refer to
Query Management Facility: Learner's Guide.

You can also use the log collector language statement SQL to issue SQL commands from the same data
set that contains other log collector statements.

Note: This section assumes that you know how to use SQL to create Db2 tables. If you are not an
experienced using SQL, refer to Db2 SQL Reference for more information.

Figure 3 on page 8 shows how to use the SQL statement to create the data table shown in Table 3 on
page 6.

How to use the log collector language

Chapter 2. How to use the log collector language 7

-- Submit SQL statements to create data table
SQL CREATE TABLE DRL.RWSTAT
 (T_DATE DATE,
 T_HOUR SMALLINT,
 RD_ERR INTEGER,
 WR_ERR INTEGER,
 TOT_ERR INTEGER);

Figure 3. Creating a Db2 data table

In Figure 3 on page 8, you identify the table (called DRL.RWSTAT) and specify each of the columns in the
table.

When you use the log collector to store definitions (as discussed in “Performing log collector statements”
on page 10), the SQL statements are executed.

Defining an update
Figure 4 on page 8 shows how to use the DEFINE UPDATE statement to store data from the log into the
data table.

-- Define update to store R_REC data in DRL.RWSTAT
DEFINE UPDATE TOT_ERRS
 FROM R_REC
 TO DRL.RWSTAT
 GROUP BY
 (T_DATE = DATE,
 T_HOUR = HOUR(TIME))
 SET
 (RD_ERR = SUM(R_ERR),
 WR_ERR = SUM(W_ERR),
 TOT_ERR = SUM(R_ERR + W_ERR));

Figure 4. DEFINE UPDATE statement

In Figure 4 on page 8, you specified a name for this update process (TOT_ERRS) and specified how the
source data is processed using the GROUP BY and SET clauses.

Understanding the GROUP BY clause
In each row of the data table, you want to collect data from records written during the same hour on the
same day. The day is identified by the DATE field of each record. The TIME field identifies the exact time
when the record was written. You can obtain the hour part of this time using the HOUR function specifying
HOUR(TIME). First, you sort all records into groups with the same value of DATE and HOUR(TIME) using
the GROUP BY clause:

GROUP BY
 (T_DATE = DATE,
 T_HOUR = HOUR(TIME))

The expressions to the right of the equal signs identify the values used for grouping. To visualize the
grouping process, imagine that the log collector maintains a number of buckets labeled with different
dates and hours.

When the log collector reads each record, it computes DATE and HOUR(TIME) for the record and then,
drops the record into the appropriate bucket. After all records are processed, each bucket contains the
group of records that were written during the same hour on the same day.

For each group of records, the log collector creates one row in the data table. It stores the values of DATE
and TIME(HOUR) for each group in the columns T_DATE and T_HOUR, respectively. These are columns
identified on the left of the equal sign.

Figure 5 on page 9 shows how source records are grouped based on the GROUP BY values specified in
Figure 4 on page 8.

How to use the log collector language

8 IBM Z Decision Support : Language Guide and Reference

Understanding the SET clause
In each row of the data table, you want to store the sum of certain values from all records in the group
represented by that row. You identified the sums to be stored in Figure 4 on page 8 using the SET clause:

SET
 (RD_ERR = SUM(R_ERR),
 WR_ERR = SUM(W_ERR),
 TOT_ERR = SUM(R_ERR + W_ERR));

Each expression to the right of the equal sign specifies what to compute. The name to the left of the equal
sign identifies the column in the data table where the result is stored. For example, TOT_ERR =
SUM(R_ERR + W_ERR) is an instruction to compute R_ERR + W_ERR for each record in the group, add up
the resulting numbers, and store the sum in the column TOT_ERR of the row.

Figure 5 on page 9 shows how expressions you specified using the SET clause are applied to the groups
of records and how the results are stored in the data table.

2019-01-01

2019-01-01

2019-01-01

2019-01-01
2019-01-01
2019-01-01

RWSTAT.EXAMPLE (R_REC records)

DATE/HOUR(TIME) GROUPS

'APPL1'

'APPL3'

'APPL3'

'APPL1'

'APPL1'

'APPL3'

'APPL2'

X '0093001F'
X '0093001F'

X '0093001F'

X '0093001F'
X '0093001F'

X '0093001F'
X '0093001F'

'010002'

'020001'
'010003'

'020002'
'020003'
'030001'
'030002'
'030003'

'010001' X '00000003'
X '00000001'
X '00000002'
X '00000000'
X '00000002'
X '00000005'
X '00000004'
X '00000001'
X '00000002'

X '00000005'
X '00000003'
X '00000000'
X '00000000'
X '00000001'
X '00000003'
X '00000006'
X '00000003'
X '00000002'

X '0093001F'
X '0093001F'

'APPL2'

'APPL2'

'APPL1'
'APPL2'
'APPL3'

X '0093001F'
X '0093001F'

X '0093001F'

'030001'
'030002'
'030003'

X '00000004'
X '00000001'
X '00000002'

X '00000006'
X '00000003'
X '00000002'

DATE: HOUR(TIME):3

DATE: HOUR(TIME):2
'APPL1'

'APPL1'
'APPL2'

'APPL2'

'APPL3'

'APPL3'

X '0093001F'

X '0093001F'

X '0093001F'

X '0093001F'

X '0093001F'

X '0093001F'

'020001'

'010001'

'020002'

'010002'

'020003'

'010003'

X '00000002'

X '00000002'
X '00000001'

X '00000005'

X '00000003'

X '00000000'

X '00000005'
X '00000003'

X '00000000'

X '00000000'

X '00000001'
X '00000003'

DATE: HOUR(TIME):1

SET

DRL.RWSTAT

T_DATE T_HOUR RD_ERR WR_ERR TOT_ERR
5
7
7

11
8
4

11

131
2
3 18

Figure 5. Example of GROUP BY and SET processing

How to use the log collector language

Chapter 2. How to use the log collector language 9

Performing log collector statements
After writing statements to define the log, records within the log, and the update process, you can execute
these statements to store the definitions. Then, you can use the definitions to collect log data.

For example, assume that you have typed all of the statements in a single data set called STATSDEF,
which is a member of DRL.LOCAL.DEFS. Figure 6 on page 10 shows the contents of STATSDEF.

-- Define RWSTAT log type to IBM Z Decision Support
DEFINE LOG RWSTAT;
COMMENT ON LOG RWSTAT IS 'Log definition for RWSTAT'

-- Define R_REC record type to IBM Z Decision Support
DEFINE RECORD R_REC IN LOG RWSTAT
 FIELDS
 (A_NAME OFFSET 0 LENGTH 10 CHAR,
 DATE OFFSET 10 LENGTH 4 DATE(0CYYDDDF),
 TIME OFFSET 14 LENGTH 6 TIME(HHMMSS),
 R_ERR OFFSET 20 LENGTH 4 BINARY,
 W_ERR OFFSET 24 LENGTH 4 BINARY);
COMMENT ON RECORD R_REC IS 'Definition of R_REC record in RWSTAT';

-- Submit SQL statements to create data table
SQL CREATE TABLE DRL.RWSTAT
 (T_DATE DATE,
 T_HOUR SMALLINT,
 RD_ERR INTEGER,
 WR_ERR INTEGER,
 TOT_ERR INTEGER);

-- Define update to store R_REC data in DRL.RWSTAT
DEFINE UPDATE TOT_ERRS
 FROM R_REC
 TO DRL.RWSTAT
 GROUP BY
 (T_DATE = DATE,
 T_HOUR = HOUR(TIME))
 SET
 (RD_ERR = SUM(R_ERR),
 WR_ERR = SUM(W_ERR),
 TOT_ERR = SUM(R_ERR + W_ERR));

Figure 6. Contents of STATSDEF data set

To store the log, record, and update definitions, and to execute the SQL statement to create the data
table, submit the JCL shown in Figure 7 on page 10.

//jobname JOB parameters
//LC EXEC PGM=DRLPLC,PARM=('SYSPREFIX=DRLSYS SYSTEM=DSN'),
// REGION=1M
//STEPLIB DD DISP=SHR,DSN=DRL190.SDRLLOAD
//DRLIN DD DISP=SHR,DSN=DRL.LOCAL.DEFS(STATSDEF)
//DRLOUT DD SYSOUT=*
//DRLDUMP DD SYSOUT=*

Figure 7. JCL for storing log and record definitions

To submit the job shown in Figure 7 on page 10, you must add the appropriate high-level qualifier to the
DD statements. You might also need to modify these parameters:
SYSTEM=DSN

Specifies DSN as the Db2 subsystem. If your Db2 system has a different name, specify it instead.
SYSPREFIX=DRLSYS

Specifies DRLSYS as the prefix of the log collector system tables. If the log collector system tables
have a different prefix, specify it instead. If you do not know the prefix of the system tables, consult
your system administrator.

//STEPLIB DD DISP=SHR,DSN=DRL190.SDRLLOAD
Specifies DRL190.SDRLLOAD as the name of the IBM Z Decision Support load library. If the load
library has a different name, specify it instead. If you do not know the name of the load library, consult
your system administrator.

How to use the log collector language

10 IBM Z Decision Support : Language Guide and Reference

You might also need to add a DD statement for the Db2 load library to the STEPLIB statement. For
example:

// DD DISP=SHR,DSN=DB2.V910.SDSNLOAD

To execute the log collector statements in Figure 6 on page 10, run the job in Figure 7 on page 10
(modified as needed). If the statements are correct, the log collector stores the definitions and creates
the data table. If the log collector finds errors in a statement, it will not execute that statement.

The DRLOUT data set will contain messages confirming the completion of each statement. It will also
contain messages for statements that were not executed, explaining why they were not executed.

Verifying record definitions
After storing log and record definitions, use the LIST RECORD statement to verify that the record
definition is correct. When you use the LIST RECORD statement, you do not collect data. Instead, the
record definition is applied to the log data set.

The following figure shows the LIST RECORD statement for listing R_REC records.

LIST
 RECORD R_REC
 FIELDS DATE,
 TIME,
 R_ERR,
 W_ERR;

Figure 8. LIST RECORD statement

To use this LIST RECORD statement, submit the JCL shown in the following example.

//jobname JOB parameters
//LC EXEC PGM=DRLPLC,PARM=('SYSPREFIX=DRLSYS SYSTEM=DSN'),
// REGION=1M
//STEPLIB DD DISP=SHR,DSN=DRL190.SDRLLOAD
//DRLLOG DD DISP=SHR,DSN=RWSTAT.EXAMPLE
//DRLIN DD *
 LIST RECORD R_REC
 FIELDS DATE,
 TIME,
 R_ERR,
 W_ERR;
//DRLOUT DD SYSOUT=*
//DRLLST1 DD SYSOUT=*
//DRLDUMP DD SYSOUT=*

Figure 9. JCL for listing records

When you submit the JCL, change any system-dependent parameters (see “Performing log collector
statements” on page 10).

At the completion of the job, DRLOUT contains messages from the log collector as a result of the LIST
RECORD statement execution. The following figure shows an example of the messages that appear in
DRLOUT.

DRL0300I List started at 2019-02-25-00.14.21.
DRL0302I Processing RWSTAT.EXAMPLE on TSOL01.
DRL0380I 18 records read from the input log.
DRL0003I
DRL0315I Records read from the log or built by log procedure:
DRL0317I Record name | Number
DRL0318I -------------------|----------
DRL0319I R_REC | 18
DRL0318I -------------------|----------
DRL0321I Total | 18
DRL0381I 20 records written to the DRLLST1 file.
DRL0301I List ended at 2019-02-25-00.14.21.

Figure 10. Messages resulting from LIST RECORD statement execution

How to use the log collector language

Chapter 2. How to use the log collector language 11

The file DRLLST1 contains a list of the record fields and the data contained in those fields. The following
figure shows an example of DRLLST1 contents.

DATE TIME R_ERR W_ERR
---------- -------- ----------- -----------
2019-01-01 01.00.01 3 5
2019-01-01 01.00.02 1 3
2019-01-01 01.00.03 2 0
2019-01-01 02.00.01 0 0
2019-01-01 02.00.02 2 1
2019-01-01 02.00.03 5 3
2019-01-01 03.00.01 4 6
2019-01-01 03.00.02 1 3
2019-01-01 03.00.03 2 2
2019-01-01 04.00.01 2 6
2019-01-01 04.00.02 0 0
2019-01-01 04.00.03 4 5
2019-01-01 05.00.01 1 6
2019-01-01 05.00.02 4 7
2019-01-01 05.00.03 2 4
2019-01-01 06.00.01 1 1
2019-01-01 06.00.02 4 0
2019-01-01 06.00.03 3 5

Figure 11. Records listed by the LIST RECORD statement

Collecting log data
After successfully storing definitions, you can collect log data using those definitions.

Collecting log data in batch
To collect log data in batch, use the following JCL.

//jobname JOB parameters
//LC EXEC PGM=DRLPLC,PARM=('SYSPREFIX=DRLSYS SYSTEM=DSN'),
// REGION=1M
//STEPLIB DD DISP=SHR,DSN=DRL190.SDRLLOAD
//DRLIN DD *
 COLLECT RWSTAT;
//DRLLOG DD DISP=SHR,DSN=RWSTAT.EXAMPLE
//DRLOUT DD SYSOUT=*
//DRLDUMP DD SYSOUT=*

Figure 12. JCL used to collect log data

In the JCL, specify that you want to collect RWSTAT logs. When the JCL is executed, the log collector
processes all update definitions that you have stored for this log. Here, the log collector processes the
TOT_ERRS update, reading data from R_REC records and storing it in DRL.RWSTAT. The data set specified
by the DRLOUT statement contains error messages that occur during processing.

At the completion of the job, DRLOUT contains messages from the log collector as a result of the COLLECT
statement execution. The following figure shows an example of the messages that appear in DRLOUT.

How to use the log collector language

12 IBM Z Decision Support : Language Guide and Reference

 COLLECT RWSTAT
 DRL0300I Collect started at 2019-03-31-22.47.34
 DRL0302I Processing RWSTAT.EXAMPLE on TSOL02
 DRL0310I A database update started after 18 records due to end of log
 DRL0313I The collect buffer was filled 0 times. Consider increasing collect buffer size
 DRL0003I
 DRL0315I Records read from the log or built by log procedure:
 DRL0317I Record name | Number
 DRL0318I -------------------|----------
 DRL0319I R_REC | 18
 DRL0318I -------------------|----------
 DRL0321I Total | 18
 DRL0003I
 DRL0323I -------Buffer------ ------Database-----
 DRL0324I Table name | Inserts Updates Inserts Updates
 DRL0325I ----------------------------|--
 DRL0326I DRL .RWSTAT | 6 12 6 0
 DRL0325I ----------------------------|--
 DRL0327I Total | 6 12 6 0
 DRL0003I
 DRL0301I Collect ended at 2019-03-31-22.47.37

Figure 13. Messages resulting from COLLECT statement execution

DRL.RWSTAT contains the data shown in the following table.

Table 4. Contents of DRL.RWSTAT after data collection

T_DATE T_HOUR RD_ERR WR_ERR TOT_ERR

2019-01-01 1 6 8 14

2019-01-01 2 7 4 11

2019-01-01 3 7 11 18

2019-01-01 4 6 11 18

2019-01-01 5 7 17 24

2019-01-01 6 8 6 14

Collecting log data online
You can perform the data collection process online using the administration dialog. From the
administration dialog, you can:

• Execute log collector statements
• Verify record definitions
• Collect log data using the COLLECT statement

For more information about using the administration dialog, refer to the Administration Guide.

How to use the log collector language

Chapter 2. How to use the log collector language 13

How to use the log collector language

14 IBM Z Decision Support : Language Guide and Reference

Chapter 3. Defining logs and records

Chapter 2, “How to use the log collector language,” on page 5, described how to write definitions and
collect log data from a simple log data set. However, log data sets are typically much more complex. Many
log data sets contain more than one record type, each with a different record structure.

This chapter describes more about writing record definitions. It also explains how to define more complex
record structures and how to modify record definitions after they are stored.

Learning more about writing record definitions

About this task
Figure 14 on page 15 shows the record definition used to define R_REC records.

-- Define R_REC record type to IBM Z Decision Support
DEFINE RECORD R_REC IN LOG RWSTAT
 FIELDS
 (A_NAME OFFSET 0 LENGTH 10 CHAR,
 DATE OFFSET 10 LENGTH 4 DATE(0CYYDDDF),
 TIME OFFSET 14 LENGTH 6 TIME(HHMMSS),
 R_ERR OFFSET 20 LENGTH 4 BINARY,
 W_ERR OFFSET 24 LENGTH 4 BINARY);
COMMENT ON RECORD R_REC IS 'Definition of R_REC record in RWSTAT;

Figure 14. Record definition for R_REC record type

For each of the fields, a field name, offset, length, and field format were specified. When you define
information about the fields, you can also use these specifications:
Field name

You must provide a field name if you plan to collect data from that field. Otherwise, you can use an
asterisk (*) for the field name.

For example, you could specify this record definition:

DEFINE RECORD R_REC IN LOG RWSTAT
 FIELDS
 (* OFFSET 0 LENGTH 10 CHAR,
 DATE OFFSET 10 LENGTH 4 DATE(0CYYDDDF),
 TIME OFFSET 14 LENGTH 6 TIME(HHMMSS),
 R_ERR OFFSET 20 LENGTH 4 BINARY,
 W_ERR OFFSET 24 LENGTH 4 BINARY);

This definition specifies that a field begins at offset 0 and is 10 bytes long. When you use an asterisk
for the field name, however, you cannot refer to this field using any other log collector statement (such
as DEFINE UPDATE or LIST RECORD).

Field offset
You can explicitly identify each offset as shown in Figure 14 on page 15, or you can leave the offset
blank. For example, you could specify this record definition:

DEFINE RECORD R_REC IN LOG RWSTAT
 FIELDS
 (A_NAME OFFSET 0 LENGTH 10 CHAR,
 DATE OFFSET 10 LENGTH 4 DATE(0CYYDDDF),
 TIME LENGTH 6 TIME(HHMMSS),
 R_ERR LENGTH 4 BINARY,
 W_ERR OFFSET 24 LENGTH 4 BINARY);

The DATE field begins at offset 10 and is 4 bytes long. An omitted offset for the TIME field means that
it immediately follows the DATE field and begins at offset 14 (the offset of the DATE field plus the

Defining logs and records

© Copyright IBM Corp. 1994, 2017 15

length of the DATE field). Because the R_ERR field immediately follows the TIME field, it begins at
offset 20.

Field length
You can explicitly specify the length of a field or use the default length, which is determined by the
field format.

For example, the default length for a binary field is 4 bytes. So, you could specify the R_ERR field
without a length:

DEFINE RECORD R_REC IN LOG RWSTAT
 FIELDS
 (A_NAME OFFSET 0 LENGTH 10 CHAR,
 DATE OFFSET 10 LENGTH 4 DATE(0CYYDDDF),
 TIME LENGTH 6 TIME(HHMMSS),
 R_ERR BINARY,
 W_ERR OFFSET 24 LENGTH 4 BINARY);

Field format
If you do not specify a format for a field, the default format is hexadecimal. Table 37 on page 132
shows a complete list of field formats.

You can also specify the length of some fields when you specify the format. For example, instead of
using the field length when you specify a character field format, you can use CHAR(4).

Note: You can specify the field length and field format together for the CHAR and BIT field formats.
This notation is not allowed on any other field formats.

When you define a record using the DEFINE RECORD statement, you must specify only the fields from
which you plan to collect data. For example, Figure 15 on page 16 shows another way to define fields in
the R_REC record:

DEFINE RECORD R_REC IN LOG RWSTAT
 FIELDS
 (DATE OFFSET 10 DATE(0CYYDDDF),
 TIME TIME(HHMMSS),
 R_ERR BINARY,
 W_ERR BINARY);

Figure 15. Defining the R_REC using defaults

In Figure 15 on page 16, you do not specify the A_NAME field because it does not provide information
that is meaningful to the total number of read and write errors per hour. You also use defaults for the field
offset and field length (the offset for the DATE field is necessary because the field does not begin at offset
0).

Although using the defaults shown in Figure 15 on page 16 makes typing definitions quicker, you should
be careful. Assume that you defined the fields in R_REC with no explicit offsets. This means that A_NAME
begins at offset 0 and DATE begins at offset 10. If you later edit the definition and delete A_NAME, DATE
would be listed as the first field in the record and begin at offset 0. The offset of all other fields would be
reduced by 10 (the length of A_NAME). Collecting data with this definition would produce invalid results.

Another problem could occur if you specified an incorrect length for a field. Because offsets are calculated
using lengths, the error would result in an incorrect offset for all remaining fields.

Defining sections within a record

About this task
Many log data set records, such as SMF records, contain sections. A section is a series of adjacent bytes
that contain data located within a record. In records containing sections, information about the section
(such as the offset within the record where the section occurs and the length of the section) can be stored
within the record itself. This information can be fixed or can vary, depending on the data in the record (and
it can differ for each record).

Defining logs and records

16 IBM Z Decision Support : Language Guide and Reference

A record can also have repeated sections, which are sections that occur more than once in a record, and
nested sections, which are sections within sections. For more information about repeated sections, see
“Using repeated sections within records” on page 36. For more information about nested sections, see
“Using nested sections within records” on page 39.

Defining a record containing a section
Assume that you want to collect data about the subsystems running under MVS in your organization. The
data is contained in a section called SUB_1 of the SUB_REC record. Two fields (SUB_OFF and SUB_LEN) in
the record provide information about the location and length of the subsystem section. The SUB_1 section
begins at the offset specified in the SUB_OFF field. Its length is specified in the SUB_LEN field.

Table 5 on page 17 shows the structure of the SUB_REC record.

Table 5. Structure of a record containing a section

Field name Offset Length Data format Description

REC_LEN 0 2 Binary Length of the record

REC_TYPE 2 2 Character Type of record

REC_SID 4 4 Character System identifier

REC_DATE 8 4 Packed Decimal Date record was written

REC_TIME 12 6 Character Time record was written

SUB_OFF 18 2 Binary Offset of subsystem section

SUB_LEN 20 4 Binary Length of subsystem section

•
• (Other fields within the record)
•

SUB_1 section

SUB1_TYPE 0 2 Character Subsystem identifier

SUB1_PNM 2 8 Character Program name

SUB1_VER 10 2 Character Version number of program

SUB1_REL 12 2 Character Release level of program

Figure 16 on page 17 shows the format of the SUB_REC record.

REC_LEN

R_REC record SUB_1 section

Specifies offset

SUB1_TYPEREC_TYPE SUB1_PNMREC_SID SUB1_VERREC_DATE REC_TIME SUB1_RELSUB_OFF SUB_LEN

Figure 16. Structure of the SUB_REC record and SUB_1 section

To write a record definition for the SUB_REC record, use the DEFINE RECORD statement shown in Figure
17 on page 18.

Defining logs and records

Chapter 3. Defining logs and records 17

-- Define SUB_REC record
DEFINE RECORD SUB_REC IN LOG SUB_LOG
 FIELDS
 (REC_LEN OFFSET 0 LENGTH 2 BINARY,
 REC_TYPE OFFSET 2 LENGTH 2 CHAR,
 REC_SID OFFSET 4 LENGTH 4 CHAR,
 REC_DATE OFFSET 8 LENGTH 4 DATE(0CYYDDDF),
 REC_TIME OFFSET 12 LENGTH 6 TIME(HHMMSS),
 SUB_OFF OFFSET 18 LENGTH 2 BINARY,
 SUB_LEN OFFSET 20 LENGTH 4 BINARY)

 -- Define section SUB_1
 SECTION SUB_1
 OFFSET SUB_OFF
 LENGTH SUB_LEN
 FIELDS
 (SUB1_TYPE OFFSET 0 LENGTH 2 CHAR,
 SUB1_PNM OFFSET 2 LENGTH 8 CHAR,
 SUB1_VER OFFSET 10 LENGTH 2 CHAR,
 SUB1_REL OFFSET 12 LENGTH 2 CHAR)

 -- End of definition for section SUB_1
-- End of definition for record SUB_REC
;
COMMENT ON RECORD SUB_REC IS 'Definition for record with a section';

Figure 17. Defining a record with a section

In Figure 17 on page 18, you identify the record (called SUB_REC) and specify that it occurs in a log called
SUB_LOG.

Next, you identify each of the fields in the record. Remember that you need only define the fields that you
want to reference later. However, you must identify the SUB_OFF and SUB_LEN fields because they are
used in the SECTION clause.

The SECTION clause specifies that section SUB_1 occurs in the SUB_REC record and identifies the fields
that occur in the section:

 SECTION SUB_1
 OFFSET SUB_OFF
 LENGTH SUB_LEN
 FIELDS
 (SUB1_TYPE OFFSET 0 LENGTH 2 CHAR,
 SUB1_PNM OFFSET 2 LENGTH 8 CHAR,
 SUB1_VER OFFSET 10 LENGTH 2 CHAR,
 SUB1_REL OFFSET 12 LENGTH 2 CHAR)

Using the OFFSET clause, you specify that the value contained in field SUB_OFF is the offset where SUB_1
begins. The length of SUB_1 is the value contained in SUB_LEN.

You identify fields in a section the same way you identified fields in a record. The offsets of a field in a
section begin from the start of the section. So, the first field, SUB1_TYPE, begins at offset 0.

You can document sections within your definitions by adding comments:

-- Define SUB_REC record
 -- Define section SUB_1
 -- End of definition for section SUB_1
-- End of definition for record SUB_REC

Typically, record definitions are complex and contain definitions for many different sections. Adding
comments throughout record definitions make them easier to read.

Defining multiple record types
So far, you have assumed that all records within a log data set are the same. However, log data sets
typically contain many different kinds of records (called record types).

For example, assume that you have a log data set (called RWINFO.LOG) that contains data about read and
write errors. Some applications (APPL1, APPL2, and APPL3) write records of type A to RWINFO.LOG.

Defining logs and records

18 IBM Z Decision Support : Language Guide and Reference

Table 6 on page 19 shows the structure of type A records. Notice that records of type A always have a
field called REC_TYPE that contains the value A.

Table 6. Structure of Type A records in RWINFO.LOG log data set

Field name Offset Length Data format Description

REC_TYPE 0 2 Character Contains the record type (here, it is A)

A_NAME 2 10 Character Contains the name of the application writing to
this data set

DATE 12 4 Packed decimal in
format 0cyydddf

Contains the date, where:
0c

Century
yy

Year within the century
ddd

Day within the year
f

Any character

TIME 16 6 Character string in
the format hhmmss

Contains the time where:
hh

Hour
mm

Minute
ss

Second

R_ERR 22 4 Binary The number of read errors

W_ERR 26 4 Binary The number of write errors

Other applications (APPL4, APPL5, and APPL6) write records of type B to RWINFO.LOG. Table 7 on page
19 shows the structure of type B records. Notice that records of type B always have a field called
REC_TYPE that contains the value B.

Table 7. Structure of Type B records in RWINFO.LOG log data set

Field name Offset Length Data format Description

REC_TYPE 0 2 Character Contains the record type (here, it is B)

DATE 2 4 Packed decimal in the
format 0cyydddF

Contains the date where:
0c

Century
yy

Year within the century
ddd

Day within the year
f

Any character

Defining logs and records

Chapter 3. Defining logs and records 19

Table 7. Structure of Type B records in RWINFO.LOG log data set (continued)

Field name Offset Length Data format Description

TIME 6 6 Character string in the
format hhmmss

Contains the time where:
hh

Hour
mm

Minute
ss

Second

R1_ERR 12 4 Binary The number of read errors

W1_ERR 16 4 Binary The number of write errors

Figure 18 on page 20 shows the contents of the records in RWINFO.LOG.

'A'
'B'

'APPL2'

'A'

'A'

'B'
'A'
'A'
'A'

'APPL1'

'APPL2'

'APPL3'

'APPL3'

X '0093001F'

'APPL1'

X '0093001F'

X '0093001F'
X '00000004'

X '0093001F'

X '0093001F'
X '0093001F'

X '0093001F'

X '0093001F'

X '00000001'

X '00000001'
X '00000001'X '00000002'

X '00000002'
X '00000003'

X '00000003'

X '00000003'

X '00000003'

X '00000005'

X '00000005'

X '00000002'
X '00000000'

X '00000000'

X '00000000'
'010004'

'010001'
'010002'
'010003'

'020001'
'020002'

'020004'
'020003'

Figure 18. Contents of RWINFO.LOG data set.

IBM Z Decision Support processes records according to the following standard:

• If a record is fixed length, the first 2 bytes identify the record type.
• If a record is variable length, the second 2 bytes identify the record length.

IBM Z Decision Support can process customized records that do not contain these fields.

Note: If customized records differ only in the first 2 or 4 bytes and are otherwise identical, IBM Z Decision
Support assumes that the log has already been processed.

Defining the records

About this task
Figure 19 on page 21 shows how to define both type A and type B records.

Defining logs and records

20 IBM Z Decision Support : Language Guide and Reference

-- Create the log and record definitions
DEFINE LOG RWINFO;
COMMENT ON LOG RWINFO IS 'Definition of log with multiple records';

-- Create record definition for Type A records
DEFINE RECORD TYPA_REC IN LOG RWINFO
 IDENTIFIED BY REC_TYPE='A'
 FIELDS
 (REC_TYPE OFFSET 0 LENGTH 2 CHAR,
 A_NAME OFFSET 2 LENGTH 10 CHAR,
 DATE OFFSET 12 LENGTH 4 DATE(0CYYDDDF),
 TIME OFFSET 16 LENGTH 6 TIME(HHMMSS),
 R_ERR OFFSET 22 LENGTH 4 BINARY,
 W_ERR OFFSET 26 LENGTH 4 BINARY);
COMMENT ON RECORD TYPA_REC IS 'Definition for type A records';

-- Create record definition for Type B records
DEFINE RECORD TYPB_REC IN LOG RWINFO
 IDENTIFIED BY REC_TYPE='B'
 FIELDS
 (REC_TYPE OFFSET 0 LENGTH 2 CHAR,
 DATE OFFSET 2 LENGTH 4 DATE(0CYYDDDF),
 TIME OFFSET 6 LENGTH 6 TIME(HHMMSS),
 R1_ERR OFFSET 12 LENGTH 4 BINARY,
 W1_ERR OFFSET 16 LENGTH 4 BINARY);
COMMENT ON RECORD TYPB_REC IS 'Definition for type B records';

Figure 19. Defining multiple records

In Figure 19 on page 21, you create a separate definition for each record type. You distinguish between
different record types using the IDENTIFIED BY clause. Whenever REC_TYPE='A', the record definition for
type A records apply. Whenever REC_TYPE='B', the record definition for type B records apply.

“Storing data from multiple sources in a single data table” on page 25 describes how to use these
definitions to collect data and update a data table.

Changing log and record definitions

About this task
After you have stored log and record definitions you can change them:

• Using the DROP statement to delete the existing definition and then using the DEFINE LOG or the
DEFINE RECORD statement to write a new log or record definition

• Using the ALTER LOG or the ALTER RECORD statement to change a log or record definition

Using the DROP statement to delete a record definition

About this task
You can use the DROP statement to delete a stored record definition. For example, assume that you
wanted to delete the stored definition for SUB_REC records. To delete the definition, use this statement:

DROP RECORD SUB_REC;

You can also use the DROP statement in combination with the DEFINE RECORD statement to make
modifications to a stored definition. Assume that you want to add N_FIELD to the SUB_1 section
beginning at offset 0. Because you have explicitly defined the offsets for each field, you must redefine
each offset. One way to redefine them would be to use the statements in Figure 20 on page 22.

Defining logs and records

Chapter 3. Defining logs and records 21

DROP RECORD SUB_REC;

-- Define SUB_REC record
DEFINE RECORD SUB_REC IN LOG SUB_LOG
 IDENTIFIED BY REC_TYPE='5'
 FIELDS
 (REC_LEN OFFSET 0 LENGTH 2 BINARY,
 REC_TYPE OFFSET 2 LENGTH 2 CHAR,
 REC_SID OFFSET 4 LENGTH 4 CHAR,
 REC_DATE OFFSET 8 LENGTH 4 DATE(0CYYDDDF),
 REC_TIME OFFSET 12 LENGTH 6 TIME(HHMMSS),
 SUB_OFF OFFSET 18 LENGTH 2 BINARY,
 SUB_LEN OFFSET 20 LENGTH 4 BINARY)

 -- Define section SUB_1 record
 SECTION SUB_1
 OFFSET SUB_OFF
 LENGTH SUB_LEN
 FIELDS
 (N_FIELD OFFSET 0 LENGTH 2 BINARY,
 SUB1_TYPE OFFSET 2 LENGTH 2 CHAR,
 SUB1_PNM OFFSET 4 LENGTH 8 CHAR,
 SUB1_VER OFFSET 12 LENGTH 2 CHAR,
 SUB1_REL OFFSET 14 LENGTH 2 CHAR)

 -- End of definition for section SUB_1

-- End of definition for record SUB_REC
;
COMMENT ON RECORD SUB_REC IS 'Definition for record with a section';

Figure 20. Using the DROP statement to redefine a record

The statement DROP RECORD SUB_REC deletes the stored definition of SUB_REC. The statement
DEFINE RECORD SUB_REC stores a new definition.

Using the ALTER RECORD statement

About this task
You can use the ALTER RECORD statement to change a stored record definition. However, you typically
want to make only quick changes using the ALTER RECORD statement, because you cannot see the
original DEFINE RECORD statement when you use the ALTER RECORD statement. In addition, if you typed
the original DEFINE RECORD statement into a data set and then used the ALTER RECORD statement to
change it, the data set would no longer contain the latest record definition.

For example, assume you had this record definition:

Defining logs and records

22 IBM Z Decision Support : Language Guide and Reference

-- Define SUB_REC record
DEFINE RECORD SUB_REC IN LOG SUB_LOG
 IDENTIFIED BY REC_TYPE='5'
 FIELDS
 (REC_LEN OFFSET 0 LENGTH 2 BINARY,
 REC_TYPE OFFSET 2 LENGTH 2 CHAR,
 REC_SID OFFSET 4 LENGTH 4 CHAR,
 REC_DATE OFFSET 8 LENGTH 4 DATE(0CYYDDDF),
 REC_TIME OFFSET 12 LENGTH 6 TIME(HHMMSS),
 SUB_OFF OFFSET 18 LENGTH 2 BINARY,
 SUB_LEN OFFSET 20 LENGTH 4 BINARY)

 -- Define section SUB_1 record
 SECTION SUB_1
 OFFSET SUB_OFF
 LENGTH SUB_LEN
 FIELDS
 (SUB1_TYPE OFFSET 0 LENGTH 2 CHAR,
 SUB1_PNM OFFSET 2 LENGTH 8 CHAR,
 SUB1_VER OFFSET 10 LENGTH 2 CHAR,
 SUB1_REL OFFSET 12 LENGTH 2 CHAR)

 -- End of definition for section SUB_1
-- End of definition for record SUB_REC
;
COMMENT ON RECORD SUB_REC IS 'Definition for record containing section';

Figure 21. Sample record definition

You can modify fields and change record procedures using the ALTER RECORD statement. For example,
assume that you wanted to add a field called N_FIELD to the end of section SUB_1. You could add the
field using the ALTER RECORD statement in Figure 22 on page 23.

ALTER RECORD SUB_REC
 ADD FIELDS(N_FIELD OFFSET 14 LENGTH 2 BINARY) IN SECTION SUB_1;

Figure 22. Changing a record definition

Executing this ALTER RECORD statement adds N_FIELD to the section SUB_1, starting at offset 14.

Defining logs and records

Chapter 3. Defining logs and records 23

Defining logs and records

24 IBM Z Decision Support : Language Guide and Reference

Chapter 4. Updating, storing, and managing data in
tables

Although it can be useful to store data from a single record type in a log data set into a data table, you can
also perform more complex tasks with data tables. For example, you can store data from multiple record
types into a data table. Then, you can take the data from that data table, summarize it, and store the
result in another data table.

This chapter describes how to update a data table from multiple record types and how to store data from
one data table into another data table. It also explains how to use log collector language statements to
manage data within tables.

Storing data from multiple sources in a single data table

About this task
“Defining multiple record types” on page 18 described how to define two record types (type A and type B)
that occur in RWINFO.LOG. These log and record definitions were used:

-- Create the log and record definitions
DEFINE LOG RWINFO;
COMMENT ON LOG RWINFO IS 'Definition of log containing multiple records';

-- Create record definition for Type A records
DEFINE RECORD TYPA_REC IN LOG RWINFO
 IDENTIFIED BY REC_TYPE='A'
 FIELDS
 (REC_TYPE OFFSET 0 LENGTH 2 CHAR,
 A_NAME OFFSET 2 LENGTH 10 CHAR,
 DATE OFFSET 12 LENGTH 44 DATE(0CYYDDDF),
 TIME OFFSET 16 LENGTH 6 TIME(HHMMSS),
 R_ERR OFFSET 22 LENGTH 4 BINARY,
 W_ERR OFFSET 26 LENGTH 4 BINARY);
COMMENT ON RECORD TYPA_REC IS 'Definition for type A records';

-- Create record definition for Type B records
DEFINE RECORD TYPB_REC IN LOG RWINFO
 IDENTIFIED BY REC_TYPE='B'
 FIELDS
 (REC_TYPE OFFSET 0 LENGTH 2 CHAR,
 DATE OFFSET 2 LENGTH 4 DATE(0CYYDDDF),
 TIME OFFSET 6 LENGTH 6 TIME(HHMMSS),
 R1_ERR OFFSET 12 LENGTH 4 BINARY,
 W1_ERR OFFSET 16 LENGTH 4 BINARY);
COMMENT ON RECORD TYPB_REC IS 'Definition for type B records';

Figure 23. Definitions used in RWINFO.LOG

You want to collect data from both records and store the result in a single data table. To do so, you must
create the table and define the update process for storing data in the data table.

Creating the data table

About this task
The DRL.STATS_H data table is used to store the collected data. The table contains these columns (the
data is derived from both record types):

• D_DATE is the date the records are written.
• D_HOUR is the hour in the date the records are written.
• RD_ERR is the total read errors (from both record types) generated per hour.

Updating, storing, and managing data in tables

© Copyright IBM Corp. 1994, 2017 25

• WR_ERR is the total write errors (from both record types) generated per hour.
• TOT_ERR is the total number of read and write errors generated per hour.

Figure 24 on page 26 shows the SQL log collector language statement you use to create this table.

-- Create a data table to store the collected data
SQL CREATE TABLE DRL.STATS_H
 (D_DATE DATE,
 D_HOUR SMALLINT,
 RD_ERR INTEGER,
 WR_ERR INTEGER,
 TOT_ERR INTEGER);

Figure 24. Creating the DRL.STATS_H data table

Writing the update definition

About this task
To store data from both record types (A and B) into a single data table, use two DEFINE UPDATE
statements. Each DEFINE UPDATE statement is similar to the one used in “Defining an update” on page 8:

-- Define update to store R_REC data in DRL.RWSTAT
DEFINE UPDATE TOT_ERRS
 FROM R_REC
 TO DRL.RWSTAT
 GROUP BY
 (T_DATE = DATE,
 T_HOUR = HOUR(TIME))
 SET
 (RD_ERR = SUM(R_ERR),
 WR_ERR = SUM(W_ERR),
 TOT_ERR = SUM(R_ERR + W_ERR));

When you store data from more than one record type into a single data table, follow these rules:

• All update definitions must use the same data table columns to store grouping values. That is, the
column names listed for the GROUP BY clause must be the same for both record types.

• For example, to store data from two records in the same column, you must accumulate that data in the
same way. For example, if data from two records is to be stored in column COL_A, enter:

COL_A = SUM(REC1_FIELD)

for the first record type. You must also use the SUM function for the field from the second record type
that is to be stored in column COL_A:

COL_A = SUM(REC2_FIELD)

Figure 25 on page 27 shows the DEFINE UPDATE statements used to collect data from both records and
to store the result in a single data table.

Updating, storing, and managing data in tables

26 IBM Z Decision Support : Language Guide and Reference

-- Create update definition for TYPA_REC records
DEFINE UPDATE ALL_ERRS
 FROM TYPA_REC
 TO DRL.STATS_H
 GROUP BY
 (D_DATE = DATE,
 D_HOUR = HOUR(TIME))
 SET
 (RD_ERR = SUM(R_ERR),
 WR_ERR = SUM(W_ERR),
 TOT_ERR = SUM(R_ERR + W_ERR));

-- Create update definition for TYPB_REC records
DEFINE UPDATE ALL1_ERRS
 FROM TYPB_REC
 TO DRL.STATS_H
 GROUP BY
 (D_DATE = DATE,
 D_HOUR = HOUR(TIME))
 SET
 (RD_ERR = SUM(R1_ERR),
 WR_ERR = SUM(W1_ERR),
 TOT_ERR = SUM(R1_ERR + W1_ERR));

Figure 25. Creating multiple update definitions for a single data table

Based on these update definitions, data from both record types will be grouped together by date and
hour. The functions specified by the SET clause will be applied to these groups and the result for each
date and hour group will be stored as a single row in DRL.STATS_H.

Figure 26 on page 28 shows the process used to store data from two different records in a single data
table.

Updating, storing, and managing data in tables

Chapter 4. Updating, storing, and managing data in tables 27

RWINFO.LOG (TYPA_REC and TYPB_REC records)

GROUPS

STATBL_TABLE

2019-01-01

2019-01-01

2019-01-01

2019-01-01
2019-01-01

Figure 26. Processing two update definitions.

After you store the update definitions and collect log data, DRL.STATS_H will contain the data in Table 8
on page 28.

Note: The data used to produce the third row of the data table is not shown in the log data set.

Table 8. Contents of DRL.STATS_H data table after collecting log data

D_DATE D_HOUR RD_ERR WR_ERR TOT_ERR

2019-01-01 1 10 10 20

2019-01-01 2 8 7 15

2019-01-01 3 7 11 18

Storing data in multiple data tables

About this task
When you collect data, you can:

• Store data about hourly activities in one data table
• Summarize the hourly activities and store the result in another data table
• Store a weekly summary in yet another data table

Updating, storing, and managing data in tables

28 IBM Z Decision Support : Language Guide and Reference

Storing data in one table, summarizing it, and storing the result in another table is called a cascaded
update.

Defining a cascaded update
Assume that, when you collect data and store it in DRL.STATS_H (on an hourly basis), you also want to
summarize the data on a daily basis and store the result in another data table, called DRL.STATS_D.

To write a cascaded update definition, you must create a data table to store the summary data. Then, you
can write the update definition to store data from the first data table into the summary data table.

Creating the summary data table

About this task
Figure 27 on page 29 shows how to create DRL.STATS_D.

-- Creating a summary table
SQL CREATE TABLE DRL.STATS_D
 (D_DATE DATE,
 RD_ERR INTEGER,
 WR_ERR INTEGER,
 TOT_ERR INTEGER);

Figure 27. Creating a summary data table

DRL.STATS_D contains these columns:

• D_DATE is the date the record was written.
• RD_ERR is the total read errors per day.
• WR_ERR is the total write errors per day.
• TOT_ERR is the total errors per day.

Defining an update for the summary table

About this task
Next, define the update process to store data from DRL.STATS_H into DRL.STATS_D. Figure 28 on page
29 shows the DEFINE UPDATE statement you use.

DEFINE UPDATE DAY_STATS
 FROM DRL.STATS_H
 TO DRL.STATS_D
 GROUP BY
 (D_DATE = D_DATE)
 SET
 (RD_ERR = SUM(RD_ERR),
 WR_ERR = SUM(WR_ERR),
 TOT_ERR = SUM(TOT_ERR));

Figure 28. Updating a data table using information from another data table

Notice that in Figure 28 on page 29, the location of the source data (specified by the FROM clause) is the
data table DRL.STATS_H.

You specify this GROUP BY clause:

GROUP BY
 (D_DATE = D_DATE)

Based on this GROUP BY clause, the rows in DRL.STATS_H are grouped by the D_DATE column (see
“Understanding the GROUP BY clause” on page 8). Each group is stored as a single row in DRL.STATS_D.

Use the SET clause to determine how the data in each group of rows from DRL.STATS_H is processed:

Updating, storing, and managing data in tables

Chapter 4. Updating, storing, and managing data in tables 29

SET
 (RD_ERR = SUM(RD_ERR),
 WR_ERR = SUM(WR_ERR),
 TOT_ERR = SUM(TOT_ERR));

Figure 29 on page 30 shows how data is stored in DRL.STATS_H, summarized by D_DATE, and stored in
DRL.STATS_D. When you perform this cascaded update, the DRL.STATS_D table is updated using only the
data entered into the DRL.STATS_H table in the same data collection process. For example, if you start
with an empty DRL.STATS_D table and with DRL.STATS_H containing some data, then, after data
collection, DRL.STATS_D contains the summary of only the data that you just collected. If you want to
include the earlier contents of DRL.STATS_H in the summary, use the RECALCULATE statement as
discussed in “Managing data within tables” on page 31.

DRL.STATS_H

DRL.STATS_D

DATE GROUPS

2019-01-01

2019-01-01

2019-01-01

2019-01-01

2019-01-01
2019-01-01

2019-01-01

2019-01-01

Figure 29. Cascaded update process

When you collect log data, based on the update definitions in Figure 25 on page 27 and Figure 28 on page
29, DRLOUT will contain messages like those in Figure 30 on page 30.

 COLLECT RWINFO ;
 DRL0300I Collect started at 2019-04-02-02.11.32.
 DRL0302I Processing RWINFO.LOG on TSOL02.
 DRL0310I A database update started after 12 records due to end of log.
 DRL0313I The collect buffer was filled 0 times.
 DRL0003I Consider increasing the collect buffer size.
 DRL0315I Records read from the log or built by log procedure:
 DRL0317I Record name | Number
 DRL0318I -------------------|----------
 DRL0319I TYPA_REC | 9
 DRL0319I TYPB_REC | 3
 DRL0318I -------------------|----------
 DRL0321I Total | 12
 DRL0003I
 DRL0323I -------Buffer------ ------Database-----
 DRL0324I Table name | Inserts Updates Inserts Updates
 DRL0325I ----------------------------|--
 DRL0326I DRL .STATS_D | 1 2 1 0
 DRL0326I DRL .STATS_H | 3 9 3 0
 DRL0325I ----------------------------|--
 DRL0327I Total | 4 11 4 0
 DRL0003I
 DRL0301I Collect ended at 2019-04-02-02.11.36.

Figure 30. Messages resulting from data collection for cascaded update

Table 9 on page 31 shows the data stored in DRL.STATS_D after you collect data.

Updating, storing, and managing data in tables

30 IBM Z Decision Support : Language Guide and Reference

Table 9. Contents of DRL.STATS_D after collecting log data

D_DATE RD_ERR WR_ERR TOT_ERR

2019-01-01 25 28 53

Managing data within tables

About this task
You can use log collector statements to manage data contained in data tables. You can also modify a data
table and reflect modifications in other tables if they derive data from the first table. For example, you can
change data in DRL.STATS_H and reflect the changes in DRL.STATS_D.

You can use log collector statements to:

• Delete data from tables. Use the PURGE statement to delete data from tables. The PURGE statement
performs the deletion based on the criteria you specify with the DEFINE PURGE statement.

• Modify data within tables. You can use the RECALCULATE statement to correct invalid data. You can also
insert and delete rows using the RECALCULATE statement.

Deleting data

About this task
You can delete data from data tables using the PURGE statement. Use the PURGE statement when you
want to regularly delete certain data from the table, such as when you want to delete old data.

To use the PURGE statement, you must first specify the purge conditions using the DEFINE PURGE
statement. For example, the table DRL.STATS_H stores the read and write errors by date. Assume that you
want to delete all data that is more than 14 days old.

To specify the purge condition, use the DEFINE PURGE statement in Figure 31 on page 31.

DEFINE PURGE FROM DRL.STATS_H
 WHERE D_DATE < CURRENT DATE - 14 DAYS;

Figure 31. Using the DEFINE PURGE statement

The DEFINE PURGE statement indicates the data table for which the purge conditions are effective. The
WHERE clause on the DEFINE PURGE statement must be a valid SQL search condition. However, the log
collector must be able to recognize its tokens.

To store a purge condition for DRL.STATS_H, use the DEFINE PURGE statement in Figure 31 on page 31.
You can then purge data using the PURGE statement in Figure 32 on page 31.

PURGE
 EXCLUDE DRL.STATS_D;

Figure 32. Using the PURGE statement

Executing PURGE will purge data from all tables that have a purge condition.

In Figure 32 on page 31, you specify PURGE, but you also use the EXCLUDE clause to exclude
DRL.STATS_D from the purge. To purge data from DRL.STATS_H only, you could also use the PURGE
statement in Figure 33 on page 31.

PURGE
 INCLUDE DRL.STATS_H;

Figure 33. Using the PURGE statement

Updating, storing, and managing data in tables

Chapter 4. Updating, storing, and managing data in tables 31

When you specify a table using the INCLUDE clause, only that table is processed for the purge.

Changing data within tables
You can use the RECALCULATE statement to change data that is stored in the data tables, and then
update more tables based on the changed information.

Correcting data
Assume that you are verifying the accuracy of the data in DRL.STATS_H, which contains the following
values:

Table 10. Contents of DRL.STATS_H before the RECALCULATE statement is executed

D_DATE D_HOUR RD_ERR WR_ERR TOT_ERR

2019-01-01 1 10 10 20

2019-01-01 2 8 7 15

2019-01-01 3 7 11 18

You determine that the number of read errors produced in hour 3 is incorrect. The correct number of read
errors should be 4 instead of 7. So, the TOT_ERR column is also incorrect. The total errors produced in
hour 3 were 15 instead of 18.

Use the RECALCULATE statement in Figure 34 on page 32 to correct DRL.STATS_H.

RECALCULATE DRL.STATS_D
 UPDATE DRL.STATS_H
 SET
 (RD_ERR = 4,
 TOT_ERR = 15)
 WHERE
 (D_HOUR = 3
 AND D_DATE = '2019-01-01');

Figure 34. Using the RECALCULATE statement

In Figure 34 on page 32, you specify that you want to change the fields RD_ERR and TOT_ERR in the row
where D_DATE is 2019-01-01 and D_HOUR is 3. When you execute the RECALCULATE statement,
DRL.STATS_H contains the data in Table 11 on page 32.

Table 11. Contents of DRL.STATS_H after the RECALCULATE statement is executed

D_DATE D_HOUR RD_ERR WR_ERR TOT_ERR

2019-01-01 1 10 10 20

1003-01-01 2 8 7 15

2019-01-01 3 4 11 15

In the row where D_DATE is 2019-01-01 and D_HOUR is 3, RD_ERR now contains a value of 4 and
TOT_ERR has a value of 15.

In Figure 34 on page 32, you specified RECALCULATE DRL.STATS_D. As a result, DRL.STATS_D reflects
the changed data.

Deleting and adding rows

About this task
You can delete rows from tables or add more rows to tables using the RECALCULATE statement. For
example, assume that you want to delete the number of read errors and write errors for the row that

Updating, storing, and managing data in tables

32 IBM Z Decision Support : Language Guide and Reference

contains an D_HOUR column value of 3 and a D_DATE of 2019-01-01. To do so, use the RECALCULATE
statement in Figure 35 on page 33.

RECALCULATE
 DELETE FROM DRL.STATS_H
 WHERE
 (D_HOUR = 3
 AND D_DATE = 2001-01-01);

Figure 35. Deleting a row from a data table

The DRL.STATS_D table is also changed. However, this change never results in rows being deleted from
the DRL.STATS_D table. Even if you delete all rows for the date 2019-01-01 from the DRL.STATS_H table,
the DRL.STATS_D table still contains a row for that date, with all error counts 0.

You can also insert more rows into a table. For example, assume that you want to add the row you just
deleted back into DRL.STATS_H.

Note: When you add a row into a table, you must specify the column names and the data to go into the
columns. If you leave out column names, columns (in the order they appear in the table) must be
assigned a value.

To insert a row into DRL.STATS_H, use the RECALCULATE statement in Figure 36 on page 33.

RECALCULATE
 INSERT INTO DRL.STATS_H
 (D_DATE, D_HOUR, RD_ERR, WR_ERR, TOT_ERR)
 VALUES ('2019-01-01',3,5,7,12);

Figure 36. Inserting a row into a data table

Updating, storing, and managing data in tables

Chapter 4. Updating, storing, and managing data in tables 33

Updating, storing, and managing data in tables

34 IBM Z Decision Support : Language Guide and Reference

Chapter 5. Defining update definitions

This chapter describes how to use update definitions to specify more complex processing. You can write
update definitions to read data from repeated sections, compute averages and percentiles, and determine
resource availability.

You want to store the information in a data table called DRL.CPUTAB that contains these fields:

• JOB_DAY is the day portion of date.
• JOB_CNT is the number of jobs.
• AVE_CPU is the average CPU time per job.

Figure 37 on page 35 shows the update definition used to calculate the average CPU time used per job:

DEFINE UPDATE CPU_CAL
 FROM CPU_INFO
 TO DRL.CPUTAB
 GROUP BY
 (JOB_DAY = DAY(DATE))
 SET
 (AVE_CPU = AVG(JOB_CPU, JOB_CNT),
 JOB_CNT = COUNT(JOB_CPU));

Figure 37. Calculating averages

In Figure 37 on page 35, the records are grouped by the day portion of the DATE field. The average is
determined by these lines:

SET
 (AVE_CPU = AVG(JOB_CPU, JOB_CNT)
 JOB_CNT = COUNT(JOB_CPU))

The AVG function calculates the average value of JOB_CPU for all records in a group. To use the function,
you have to specify a column of the target table that will contain the number of JOB_CPU values in the
group. Here, you used the column JOB_CNT, with the value specified as COUNT(JOB_CPU).

Table 12 on page 35 shows the results stored in DRL.CPUTAB after data collection:

Table 12. Contents of DRL.CPUTAB after data collection

JOB_DAY JOB_CNT AVE_CPU

1 5 1.86

2 4 1.33

3 3 1.50

4 5 2.00

Notice that the value of the column specified as the second argument of the AVG function (like JOB_CNT
here) must be defined by either the COUNT function or the SUM function. If you specify a column with
value defined by COUNT, as in this example, the AVG function computes the ordinary average. If you
specify a column with value defined by SUM, the AVG function computes a weighted average. The values
specified as the argument of SUM are then used as the weights.

Defining update definitions

© Copyright IBM Corp. 1994, 2017 35

Using repeated sections within records

About this task
Log records often contain sections and, in many such records, sections are repeated. The number of times
a section appears in the record can be fixed, or it can be specified by data within the record.

Assume that you want to collect statistics about data sets processed in your subsystem. For each data set
processed, the subsystem writes a section in a REP_REC record. The section, called SUBIO, contains the
data set name, the number of blocks processed, and the size of the blocks. The number of SUBIO sections
in the record is specified by a field called SIO_OCC.

Table 13 on page 36 shows the structure of REP_REC records:

Table 13. Structure of a record containing a repeated section

Field name Offset Length Data format Description

REC_TYPE 0 4 Binary Record type

REC_DATE 4 4 Packed decimal in the
format 0cyydddf

Date the record was written

REC_TIME 8 6 Character string in the
format hhmmss

Time the record was written

TOT_DSNS 14 4 Binary Total number of data sets read

SIO_OFF 18 4 Binary Offset of the first SUBIO section

SIO_LEN 22 4 Binary Length of each SUBIO section

SIO_OCC 26 4 Binary Number of SUBIO sections in the record

•
• (Other fields within the record)
•

SUBIO section (multiple occurrences of this section exist within a REP_REC record with the number of
sections specified by SIO_OCC)

SIO_DDN 0 8 Character Data set identifier

SIO_BLK 8 4 Binary Number of blocks processed in the data set

SIO_BSZ 12 4 Binary Size of the blocks

Figure 38 on page 36 shows the location of the SUBIO sections within REP_REC.

REC_TYPE

Specifies offsetREP_REC record

REC_DATE REC_TIME TOT_DSNS SIO_OFF SIO_LEN SIO_OCC SIO_DDN

First occurrence of
SUBIO section

SIO_BLK SIO_BSZ SIO_DDN

SUBIO

SIO_BLK

Figure 38. A record containing a repeated section

Defining a record with a repeated section

About this task
Figure 39 on page 37 shows how to define a record that contains a repeated section.

Defining update definitions

36 IBM Z Decision Support : Language Guide and Reference

DEFINE RECORD REP_REC IN LOG SUB_LOG
 IDENTIFIED BY REC_TYPE=5
 FIELDS
 (REC_TYPE OFFSET 0 LENGTH 4 BINARY,
 REC_DATE OFFSET 4 LENGTH 4 DATE(CYYMMDDF),
 REC_TIME OFFSET 8 LENGTH 6 TIME(HHMMSS),
 TOT_DSNS OFFSET 14 LENGTH 4 BINARY,
 SIO_OFF OFFSET 18 LENGTH 4 BINARY,
 SIO_LEN OFFSET 22 LENGTH 4 BINARY,
 SIO_OCC OFFSET 26 LENGTH 4 BINARY)

 -- Section definition for SUBIO section (repeated)
 SECTION SUBIO
 OFFSET SIO_OFF
 LENGTH SIO_LEN
 NUMBER SIO_OCC
 REPEATED
 FIELDS
 (SIO_DDN OFFSET 0 LENGTH 8 CHAR,
 SIO_BLK OFFSET 8 LENGTH 4 BINARY,
 SIO_BSZ OFFSET 12 LENGTH 4 BINARY)

 -- End of definition for repeated section SUBIO
;
COMMENT ON RECORD REP_REC IS 'A record with a repeated section';

Figure 39. Defining a record with a repeated section

Specifying a repeated section is similar to specifying a section that is not repeated. To identify the section,
use the SECTION clause. The value contained in the SIO_OFF field specifies the offset of the first
occurrence of this section. The value in SIO_LEN specifies the length of each occurrence. To specify the
fields in the section, use the FIELDS clause in the same way you specify the fields in the record itself.

To identify the section as repeated, use the REPEATED keyword.

Defining updates for records with repeated sections

About this task
You control the processing of repeated sections with the SECTION clause of the DEFINE UPDATE
statement. If you do not code the SECTION clause, the log collector ignores the repeated section. The
records are processed in the usual way, but your definition can only access the stem of the record that
consists of all fields outside the repeated sections.

If you code the SECTION clause, the log collector generates an internal record for each occurrence of the
repeated section. The record contains all data from that occurrence and all data from the record stem.
The GROUP BY and SET clauses are applied to these internal records, not to the original records from the
log.

Table 14 on page 37 shows an example of REP_REC records:

Table 14. Examples of records with repeated section

Record stem SUBIO section (1) SUBIO section (2)

REC_
TYPE

REC_ DATE REC_
TIME

TOT_
>DSNS

SIO_
OFF

SIO_
LEN

SIO_
OCC

SIO_ DDN SIO_
BLK

SIO_
SIZE

SIO_
>DDN

SIO_
BLK

SIO_
SIZE

05 0990620F 065311 2 80 16 2 A_DSN 25 4096 B_DSN 75 4096

05 0990620F 092400 1 80 16 1 C_DSN 62 4096

05 0990621F 010000 2 80 16 2 B_DSN 27 4096 A_DSN 53 4096

05 0990622F 151358 2 80 16 2 A_DSN 92 4096 E_DSN 29 4096

You could not collect the total number of processed data sets by just adding a DSNS column to the table
in Table 18 on page 39 and adding a line DSNS=SUM(TOT_DSNS) to the SET clause in Figure 41 on page
39. The column thus specified would contain the numbers 5, 4, and 4 instead of the correct numbers 3,
2, and 2 obtained in Table 16 on page 38. This is because data from the stem is repeated in several

Defining update definitions

Chapter 5. Defining update definitions 37

internal records. To collect both, the number of data sets and the number of processed blocks, you need
two update definitions, one with and one without the SECTION clause.

Accessing data from the record stem

About this task
Assume that you want to collect the total number of data sets processed per day. The field TOT_DSNS
contains the number of data sets processed. This field is in the record stem, not in the repeated section.

Figure 40 on page 38 shows the DEFINE UPDATE statement used to access data in the record stem.

DEFINE UPDATE T_DSNS
 FROM REP_REC
 TO DRL.TOTAL
 GROUP BY
 (DATE=REC_DATE)
 SET
 (DSNS=SUM(TOT_DSNS));

Figure 40. DEFINE UPDATE statement to access data in the record stem

In Figure 40 on page 38, you specified the processing exactly as for records without repeated sections.
When the log collector uses this update definition, it ignores the repeated section. The records of Table 14
on page 37 are processed as if they looked like this:

Table 15. The accessible fields when SECTION is not specified

REC_TYPE REC_DATE REC_TIME TOT_DSNS SIO_OFF SIO_LEN SIO_OCC

05 0990620F 065311 2 80 16 2

05 0990620F 092400 1 80 16 1

05 0990621F 010000 2 80 16 2

05 0990622F 151358 2 80 16 2

Notice that the log collector cannot process data from the repeated sections.

In Figure 40 on page 38, you specified that the records are to be grouped by REC_DATE (specified with
the GROUP clause) and that the total data sets processed per day are to be computed (specified with the
SET clause).

Table 16 on page 38 shows the results stored in DRL.TOTAL after data collection:.

Table 16. Contents of DRL.TOTAL after data collection

DATE DSNS

2018-06-20 3

2018-06-21 2

2018-06-22 2

Accessing data from repeated sections

About this task
Assume that you want to determine the total number of blocks read each day. This data is stored in the
SUBIO sections of each REP_REC record.

Figure 41 on page 39 shows the DEFINE UPDATE statement used to access the data stored in repeated
sections of a record.

Defining update definitions

38 IBM Z Decision Support : Language Guide and Reference

DEFINE UPDATE T_BLKS
 FROM REP_REC SECTION SUBIO
 TO DRL.BLOCK
 GROUP BY
 (DATE=REC_DATE)
 SET
 (BLKS=SUM(SIO_BLK));

Figure 41. DEFINE UPDATE statement to access data in a repeated section

The SECTION SUBIO clause after the record name in Figure 41 on page 39 states that you want to collect
data from the SUBIO sections. When the log collector uses this update definition, it generates one internal
record for each occurrence of the SUBIO section. For the REP_REC records of Table 14 on page 37, these
internal records are:

Table 17. Internal records generated as a result of specifying SECTION SUBIO

REC_ TYPE REC_ DATE REC_ TIME TOT_ DSNS SIO_ OFF SIO_ LEN SIO_ OCC SIO_ DDN SIO_ BLK SIO_ SIZE

05 0990620F 065311 2 80 16 2 A_DSN 25 4096

05 0990620F 065311 2 80 16 2 B_DSN 75 4096

05 0990620F 092400 1 80 16 1 C_DSN 62 4096

05 0990621F 010000 2 80 16 2 B_DSN 27 4096

05 0990621F 010000 2 80 16 2 A_DSN 53 4096

05 0990622F 151358 2 80 16 2 A_DSN 92 4096

05 0990622F 151358 2 80 16 2 E_DSN 29 4096

Each record contains all data from one occurrence of SUBIO and all data from the record stem. Your
GROUP BY and SET clauses are applied to these records. In Figure 41 on page 39, you specified that the
records are to be grouped by REC_DATE (specified with the GROUP clause) and that the total blocks
processed per day are to be computed (specified with the SET clause).

Table 18 on page 39 shows the results stored in DRL.BLOCK after data collection.

Table 18. Contents of DRL.BLOCK after data collection

DATE BLKS

2018-06-20 162

2018-06-21 80

2018-06-22 121

Using nested sections within records

About this task
Records often contain nested sections within sections. These sections are called subsections or nested
sections. Like sections, nested sections can be repeated or non-repeated.

Assume that you have a record similar to REP_REC. This record, called DSERR_REC, contains nested
sections within each SUBIO section that describe errors encountered while processing data sets.

Table 19 on page 39 shows the structure of DSERR_REC records:

Table 19. Structure of a record containing nested sections

Field name Offset Length Data format Description

R_TYPE 0 4 Binary Record type

Defining update definitions

Chapter 5. Defining update definitions 39

Table 19. Structure of a record containing nested sections (continued)

Field name Offset Length Data format Description

R_DATE 4 4 Packed decimal in the
format 0cyydddf

Date the record was written

R_TIME 8 6 Character string in the
format hhmmss

Time the record was written

T_DSNS 14 4 Binary Total number of data sets read

S_OFF 18 4 Binary Offset of the first SUBIO section

S_OCC 22 4 Binary Number of SUBIO sections that occur in
the record

•
• (Other fields within the record)
•

SUBIO section (multiple occurrences of this section exist within a DSERR_REC record with the number of
sections specified by SIO_OCC)

S_DDN 0 8 Character Data set identifier

S_BLK 8 4 Binary Number of blocks processed in the data set

S_BSZ 12 4 Binary Size of the blocks

N_OFF 16 4 Binary Offset of the first D_ERR nested section

N_LEN 20 4 Binary Length of each D_ERR nested section

N_OCC 24 4 Binary Number of occurrences of the D_ERR
nested section

D_ERR nested section (multiple occurrences of this section exist within a SUBIO section with the number
of sections specified by N_OCC)

B_NUM 0 4 Binary Number of blocks with error

B_RC 4 4 Binary Highest return code of the error

The following figure, “Example of records containing nested sections” shows the contents of DSERR_REC
records. Note that each occurrence of the SUBIO section has a different length, depending on the number
of occurrences of D_ERR section contained in it.

Defining update definitions

40 IBM Z Decision Support : Language Guide and Reference

Figure 42. Example of records containing nested records

Notice that each record contains all data from one occurrence of D_ERR section, all data from the
containing occurrence of the SUBIO section, and all data from the record stem. Your GROUP BY and SET

Defining update definitions

Chapter 5. Defining update definitions 41

clauses are applied to these internal records. Table 20 on page 42 shows the results stored in
DRL.PROERR after data collection.

Table 20. Contents of DRL.PROERR after data collection

P_DATE TPRO_ERR

2018-06-20 124

2018-06-21 31

2018-06-22 103

Defining a record with nested sections

About this task
Figure 42 on page 41 shows how to define the DSERR_REC record shown in Figure 43 on page 42:

DEFINE RECORD DSERR_REC IN LOG N_LOG
 IDENTIFIED BY R_TYPE = 05
 FIELDS
 (R_TYPE OFFSET 0 LENGTH 4 BINARY,
 R_DATE OFFSET 4 LENGTH 4 DATE(CYYMMDDF),
 R_TIME OFFSET 8 LENGTH 6 TIME(HHMMSS),
 T_DSNS OFFSET 14 LENGTH 4 BINARY,
 S_OFF OFFSET 18 LENGTH 4 BINARY,
 S_OCC OFFSET 26 LENGTH 4 BINARY)

 -- Section definition for SUBIO section (repeated)
 SECTION SUBIO
 OFFSET S_OFF
 LENGTH N_OFF + N_OCC*N_LEN
 NUMBER S_OCC
 REPEATED
 FIELDS
 (S_DDN OFFSET 0 LENGTH 8 CHAR,
 S_BLK OFFSET 8 LENGTH 4 BINARY,
 S_BSZ OFFSET 12 LENGTH 4 BINARY,
 N_OFF OFFSET 16 LENGTH 4 BINARY,
 N_LEN OFFSET 20 LENGTH 4 BINARY,
 N_OCC OFFSET 24 LENGTH 4 BINARY)

 -- End of definition for repeated section SUBIO

 -- Definition for D_ERR section (nested section)
 SECTION D_ERR
 IN SECTION SUBIO
 OFFSET N_OFF
 LENGTH N_LEN
 NUMBER N_OCC
 REPEATED
 FIELDS
 (B_NUM OFFSET 0 LENGTH 4 BINARY,
 B_RC OFFSET 4 LENGTH 4 BINARY)

 -- End of definition for nested section D_ERR
;
COMMENT ON RECORD DSERR_REC IS 'Record containing nested section';

Figure 43. Defining a record with nested sections

You specify a nested section like you specify a section. But notice the IN clause:

SECTION D_ERR
 IN SECTION SUBIO

The IN clause identifies D_ERR as a nested section, occurring in the SUBIO section. Notice also that the
length of each occurrence of SUBIO must be computed from the number of occurrences of D_ERR within
it:

Defining update definitions

42 IBM Z Decision Support : Language Guide and Reference

 LENGTH N_OFF + N_OCC*N_LEN

Accessing data in nested sections

About this task
Assume you want to determine the number of blocks that had processing errors. Figure 44 on page 43
shows the DEFINE UPDATE statement you use to gather the data.

DEFINE UPDATE E_DSNS
 FROM DSERR_REC SECTION D_ERR
 TO DRL.PROERR
 GROUP BY
 (P_DATE=R_DATE)
 SET
 (TPRO_ERR=SUM(B_NUM));

Figure 44. DEFINE UPDATE statement to access nested sections in a record

The clause SECTION D_ERR after the record name in Figure 44 on page 43 indicates that you want to
collect data from the D_ERR section of DSERR_REC record. When the log collector uses this update
definition, it generates one internal record for each occurrence of the D_ERR section. For the DSERR_REC
records shown in the previous table “Example of records containing nested sections,” the internal records
are:

Table 21. Internal records generated for nested repeated section

R_ TYPE R_ DATE R_ TIME T_ DSNS S_ OFF S_ OCC S_ DDN S_ BLK S_ SIZE N_ OFF N_ LEN N_ OCC B_ NUM B_ RC

05 0990620F 065311 2 80 2 A_DSN 25 4096 28 8 1 12 02

05 0990620F 065311 2 80 2 B_DSN 75 4096 28 8 2 50 05

05 0990620F 065311 2 80 2 B_DSN 75 4096 28 8 2 62 01

05 0990621F 010000 2 80 2 B_DSN 27 4096 28 8 2 05 24

05 0990621F 010000 2 80 2 B_DSN 27 4096 28 8 2 9 17

05 0990621F 010000 2 80 2 A_DSN 53 4096 28 8 1 17 03

05 0990622F 151358 2 80 2 A_DSN 92 4096 28 8 1 91 04

05 0990622F 151358 2 80 2 E_DSN 29 4096 28 8 2 02 08

05 0990622F 151358 2 80 2 E_DSN 29 4096 28 8 2 10 04

Understanding how to access data from records with sections
When you specify processing of a repeated section using the SECTION clause of the DEFINE UPDATE
statement, the log collector generates an internal record for each occurrence of that repeated section.
Your GROUP BY and SET clauses are then applied to these internal records, rather than records from the
log.

Each internal record contains fields from one occurrence of the specified repeated section. It also
contains fields from all sections containing that occurrence, from the record stem, and from certain non-
repeated subsections.

Figure 45 on page 43 shows a record of type REC with different kinds of sections.

Figure 45. Example of a record with different kinds of sections

Defining update definitions

Chapter 5. Defining update definitions 43

The record contains these sections:
A

A non-repeated section.
B

A repeated section that contains a nested non-repeated section (D).
C

A repeated section that contains a nested repeated section (E).
D

A non-repeated section contained in section B. Section D is present only in the first occurrence of
section B.

E
A nested repeated section contained in C. Two occurrences of section E are contained in the first
occurrence of section C, and three occurrences of section E are contained in the second occurrence of
section C.

The different parts of the record in Figure 45 on page 43 are:
R

Fields in the record.
A

Fields in section A.
B1

Fields in the first occurrence of section B.
B2

Fields in the second occurrence of section B.
C1

Fields in the first occurrence of section C.
C2

Fields in the second occurrence of section C.
D1

Fields in subsection D in the first occurrence of B.
E11

Fields in the first occurrence of E in the first occurrence of C.

⋮
E23

Fields in the third occurrence of E in the second occurrence of C.
Figure 46 on page 45 shows the internal records generated by the log collector, depending on the
SECTION clause.

Defining update definitions

44 IBM Z Decision Support : Language Guide and Reference

Figure 46. Data available for collection, depending on SECTION clause

To find out which fields are included in the generated records, you can use the following method.
Represent sections in the record by a tree structure as in Figure 47 on page 45. The top node represents
the record, and the remaining nodes represent the repeated sections. Each node includes its non-
repeated subsections. A line such as from C to E shows that E is a subsection of C.

Figure 47. Tree structure of a record with repeated sections

Your SECTION clause specifies one of the repeated sections. This repeated section is represented by one
of the nodes of the tree. The internal records generated for this section contain all fields from the sections
represented by that node and by all nodes on the path leading upwards.

Defining update definitions

Chapter 5. Defining update definitions 45

Obtaining a section occurrence number
When processing any of the internal records generated from a repeated section, you can use the
SECTNUM function to identify the occurrence of each section included in the record. The function returns
the occurrence number of the specified section within its containing section. If you apply the SECTNUM
function to a non-repeated section, the result is always either 1 (if the section is present) or 0 (if the
section is absent).

As an example, Figure 48 on page 46 shows the result of SECTNUM for different records from Figure 46
on page 45:

Figure 48. Result of SECTNUM for different internal records

Accessing specific sections in a record
When processing the internal records generated for repeated sections, you can access the fields of the
original record using the FIELD function. For example, you can obtain the contents of the field E_FIELD in
the occurrence E23 of section E by writing:

FIELD(E_FIELD,2,3)

Each of the two indexes (2 and 3) refers to one level of nested repeated sections containing the field. The
field E_FIELD is contained in two levels of repeated sections, C and E. The index 2 identifies the second
occurrence of C, and the index 3 identifies the third occurrence of E (within that second occurrence of C).
To specify a field D_FIELD in D1, write:

FIELD(D_FIELD,1)

Section D is contained in only one level of repeated sections (B). The index 1 identifies the first occurrence
of B.

You can also specify an asterisk (*) as an index in the FIELD function. An asterisk specifies the occurrence
contained in the currently processed internal record. For example:

FIELD(E_FIELD,*,3)

means the field E_FIELD in E23 when the log collector processes the record generated for C2. When the
log collector processes the record for C1, it means the field in E13, and yields a null value as the result,
because E13 does not exist.

Note: The indexes need not be constants as in the examples; they may be any expressions referring to the
fields of the record.

Defining update definitions

46 IBM Z Decision Support : Language Guide and Reference

The log collector actually generates the internal records for repeated sections by selecting portions of the
original record, and not by constructing new records. So, generating these records does not result in a
performance penalty.

However, accessing fields with the FIELD function has a definite price in performance, because the log
collector recalculates section lengths and offsets each time it executes the FIELD function.

Determining averages
You can use the DEFINE UPDATE statement to determine averages. Assume that you want to determine
the average amount of CPU time used per job. The records that contain this information are of type
CPU_INFO and contain the data shown in Table 22 on page 47:

Table 22. Contents of CPU_INFO records

DATE JOB_ID JOB_CPU

00006231F 4546 2.5

00006231F 5367 1.7

00006231F 5893 1.9

00006231F 6192 1.3

00006231F 7338 1.9

00006232F 1600 .8

00006232F 1775 2.1

00006232F 1990 1.4

00006232F 2222 1.0

00006233F 1752 1.1

00006233F 3193 1.9

00006233F 4000 1.5

00006234F 1655 1.7

00006234F 1883 2.3

00006234F 2122 2.0

00006234F 2775 2.3

00006234F 5721 1.7

Determining percentiles
You can use the DEFINE UPDATE statement to determine percentiles. You might need to know, for
example, whether 95% of the transactions for a particular application have a response time of less than 1
second.

Assume that you have these records in a log data set:

DATE TIME APPL_ID TRANS_NO RES_TIME

0990305F 090901 APP_A 1332 .33

0990305F 111022 APP_A 2110 .95

0990305F 131500 APP_A 2413 .24

Defining update definitions

Chapter 5. Defining update definitions 47

DATE TIME APPL_ID TRANS_NO RES_TIME

0990305F 150020 APP_A 4010 .99

0990305F 164315 APP_A 5121 .75

0990305F 185307 APP_A 6567 .53

0990305F 190000 APP_A 6800 .46

0990305F 211908 APP_A 7548 .39

0990305F 221500 APP_A 8812 .57

0990305F 230000 APP_A 9325 .37

0990305F 231912 APP_A 9794 .39

You want to determine which response time represents the 95th percentile for your transactions. You
want to store the resulting data in a data table called DRL.RTIME that has these columns:

• T_DATE is the date of the transactions.
• T_APPL is the application name.
• NUM_RESP is the total number of responses per date.
• RESP_95 is the 95th percentile of response per date.

Figure 49 on page 48 shows the update definition used to determine the 95th percentile.

DEFINE UPDATE DET_PERT
 FROM RESP_DATA
 TO DRL.RTIME
 GROUP BY
 (T_DATE = DATE,
 T_APPL = APPL_ID)
SET
 (NUM_RESP = COUNT(RES_TIME),
 RESP_95 = PERCENTILE(RES_TIME,NUM_RESP,95));

Figure 49. Calculating the 95th percentile

The 95th percentile is determined using these lines:

SET
 (NUM_RESP = COUNT(RES_TIME)
 RESP_95 = PERCENTILE(RES_TIME,NUM_RESP,95))

The PERCENTILE function returns the response time that is the 95th percentile of all response times
within the group. To use the PERCENTILE function, you must specify a column of the target table that will
contain the number of RES_TIME values in the group. Here, you used the column NUM_RESP, with the
value specified as COUNT(RES_TIME).

Because you are grouping records by date and application, the percentile function uses all response times
recorded for a specific application on a given date.

Table 23 on page 48 shows the results stored in DRL.RTIME after data collection.

Table 23. Contents of DRL.RTIME

T_DATE T_APPL NUM_RESP RESP_95

2018-03-05 APP_A 11 .97

Note: When using the PERCENTILE function, you should process all input values at the same time.
Processing input values during different data collections gives average percentiles of each collect, rather
than one overall percentile.

Defining update definitions

48 IBM Z Decision Support : Language Guide and Reference

Distributing measurements
Many times, you want to determine statistics over specific periods, such as clock hours. You know the
statistics over an interval, which does not coincide with any of these periods, and may contain several
periods. You can use the DISTRIBUTE clause of the DEFINE UPDATE statement to distribute the interval
statistics evenly over the periods.

For example, assume that you know the amount of CPU time used per job. Table 24 on page 49 shows
CPU_IN records that contain this data. Notice that the jobs take several hours and do not start or end at a
full hour.

Table 24. CPU_IN records containing data to be distributed

APPL STA_DTE STA_TME END_DTE END_TME CPU_TME

APP_A 0990705F 163000 0990705F 193000 36.0

APP_A 0990705F 204500 0990705F 234500 18.0

You want to determine the amount of CPU time used each hour (assuming the CPU time is used at an even
rate throughout the job). You want to store this data in a table called DRL.DIST that contains these
columns:

• DATE is the date of the period.
• HOUR is the hour of the period.
• CPU_TIME is the CPU time used during the period.
• USAGE is the total number of seconds that different jobs were running during the period.

Figure 50 on page 49 shows how to distribute the CPU time contained in CPU_IN records:

DEFINE UPDATE DIST_CPU
 FROM CPU_IN
 TO DRL.DIST
 DISTRIBUTE CPU_TIME
 BY 3600
 START TIMESTAMP(STA_DTE,STA_TME)
 END TIMESTAME(END_DTE,END_TME)
 TIMESTAMP CUR_TME
 INTERVAL CUR_DUR
 GROUP BY
 (DATE = DATE(CUR_TIME),
 HOUR = HOUR(CUR_TIME))
 SET
 (CPU_TIME = SUM(CPU_TME),
 USAGE = SUM(CUR_DUR));

Figure 50. Creating an update definition for measurement distribution

The clause BY 3600 in Figure 50 on page 49 specifies the periods as consecutive one-hour (3600-
second) periods starting at midnight. To specify the start and end of the interval that you want to
distribute, you use the START and END clauses. In Figure 50 on page 49, you specify the start of the
interval using the TIMESTAMP function, which produces a timestamp from the starting date (STA_DTE)
and starting time (STA_TIME) fields. You specify the end of the interval using the TIMESTAMP function to
produce a timestamp from the ending date (END_DTE) and ending time (END_TME) fields.

When the log collector executes the DISTRIBUTE clause, it first splits each interval at the period
boundaries. Then, it generates one internal record for each part resulting from the split.

Defining update definitions

Chapter 5. Defining update definitions 49

Figure 51. Splitting the interval at one-hour boundaries

Figure 51 on page 50 illustrates the process of splitting the interval from the first record of Table 24 on
page 49. When the log collector processes the records shown in Table 24 on page 49, it generates these
internal records:

100187F
100187F
100187F
100187F

100187F
100187F
100187F
100187F

100187F
100187F
100187F
100187F

100187F
100187F
100187F
100187F

163000
163000
163000
163000

204500
204500
204500
204500

193000
193000
193000
193000

234500
234500
234500
234500

2018-07-05-16.30.00
2018-07-05-17.00.00
2018-07-05-18.00.00
2018-07-05-19.00.00

2018-07-05-20.45.00
2018-07-05-21.00.00
2018-07-05-22.00.00
2018-07-05-23.00.00

1800
3600
3600
1800

900
3600
3600
2700

First input record
produces these records

Second input record
produces these records

6.0
12.0
12.0

6.0

1.5
6.0
6.0
4.5

STA_DTE STA_TME END_TME CPU_TIME CUR_TIME CUR_DUREND_DTE

Each internal record contains the same fields as the original record. The values of fields you have listed
after the keyword DISTRIBUTE (CPU_TIME in this case) are distributed proportionally to the length of the
part represented by the row. The contents of the remaining fields are copied unchanged from the original
record.

Each record also contains two more fields: CUR_TIME and CUR_DUR. They contain, respectively, the start
and length of the part represented by the row. You specify the names of these columns using the
TIMESTAMP and INTERVAL clauses.

Your GROUP BY and SET clauses are applied to the internal records and the result is used to update the
data table.

Table 25 on page 50 shows the results stored in DRL.DIST after data collection.

Table 25. Contents of DRL.DIST after data collection

DATE HOUR CPU_TIME USAGE

2018-07-05 16 6.0 1800

2018-07-05 17 12.0 3600

2018-07-05 18 12.0 3600

2018-07-05 19 6.0 1800

2018-07-05 20 1.5 900

2018-07-05 21 6.0 3600

2018-07-05 22 6.0 3600

2018-07-05 23 4.5 2700

Determining resource availability
An important aspect of system performance management is the ability to determine the availability of a
particular resource at any given time and the ability to compare that availability with the scheduled
availability of the resource.

Typically, information about the availability of a resource comes from several different sources. For
example, you can determine that a particular resource is available, or up, if that resource is being used by

Defining update definitions

50 IBM Z Decision Support : Language Guide and Reference

a job running in your system, if the resource is using CPU time, or if it is producing messages from
transactions. If applications are trying to use a particular resource and generating error messages
showing that they could not use it, the resource is unavailable or down.

Using the MERGE clause of the DEFINE UPDATE statement, you can put all this information together to
obtain the status of the resource at different times. You may think of this process as reconstructing facts
from different pieces of evidence. This evidence is usually incomplete, or even conflicting, and the log
collector must make assumptions that conform best to the collected data.

Assume that you want to determine the availability of certain resources (such as database servers), using
data stored in log files of type RES_DATA. A log of type RES_DATA contains these records:

• Records of type A, which contain data about jobs using a resource.
• Records of type B, which are written when an application attempts to access a resource and receives no

answer before the timeout period.
• Records of type C, which are created whenever a resource is started by the system operator.

Records of type A have this layout:

Table 26. Layout of Type A records (RES_DATA_A)

Field name Offset Length Data format Description

REC_TYPE 0 1 Character Character string A.

RESOURCE 2 8 Character Resource name.

START_DATE 12 6 Character Start date of job using the resource, in format yymmdd.

START_TIME 20 6 Character Start time of job using the resource, in format hhmmss.

END_DATE 28 6 Character End date of job using the resource, in format yymmdd.

END_TIME 36 6 Character End time of job using the resource, in format hhmmss.

Records of type B have this layout:

Table 27. Layout of Type B records (RES_DATA_B)

Field name Offset Length Data format Description

REC_TYPE 0 1 Character Character string B.

RESOURCE 2 8 Character Resource name.

DATE 12 6 Character Date of attempted access, in format yymmdd.

TIME 20 6 Character Time of attempted access, in format hhmmss.

TIMEOUT 28 6 Character Time, in seconds, that the application waited without
obtaining a response.

Records of type C have this layout:

Table 28. Layout of Type C records (RES_DATA_C)

Field name Offset Length Data format Description

REC_TYPE 0 1 Character Character string C.

RESOURCE 2 8 Character Resource name.

START_DATE 12 6 Character Date the resource was started, in format yymmdd.

START_TIME 20 6 Character Time the resource was started, in format hhmmss.

A log file containing these records might look like this:

Defining update definitions

Chapter 5. Defining update definitions 51

record 1: C DBSERV1 990623 010000
record 2: A DBSERV1 990623 040000 990623 060000
record 3: A DBSERV1 990623 050000 990623 070000
record 4: B DBSERV1 990623 080000 1800
record 5: C DBSERV1 990623 100000
record 6: A DBSERV1 990623 130000 990623 140000
record 7: A DBSERV1 990623 141999 990623 150000
record 8: C DBSERV1 990623 180000
record 9: A DBSERV1 990623 181999 990623 190000

Figure 52. Log file containing RES_DATA records

All records in this log contain data about the same resource, namely DBSERV1, during the same day,
namely June 23, 1999. (A log normally contains data about many resources, and may cover more than
one day.) Reading the log, you can reason like this to establish the availability of DBSERV1 at different
times:

Record number 1
Shows that DBSERV1 was started at 01.00. After this, it must have been up for at least some short
time. Nothing is then known about DBSERV1 until 04.00.

Record number 2
Shows that a job was using DBSERV1 from 04.00 through 06.00, and record number 3 indicates that
another job was using it from 05.00 through 07.00. These two records together provide evidence that
DBSERV1 was up all the time from 04.00 to 07.00.

Record number 4
Shows that at 08.00, an application attempted to use DBSERV1 and did not receive any answer for the
subsequent 30 minutes. This provides evidence that the resource was down from 08.00 to 08.30, but
you cannot tell exactly when it went down. Record number 5 indicates that the operator restarted
DBSERV1 at 10.00, but the interval from 08.30 to 10.00 is too long to conclude that DBSERV1 was
down all that time.

Records number 6 and 7
Show that DBSERV1 was up from 13.00 to 14.00 and then from 14.20 to 15.00. Although you do not
have any positive evidence for the 20 minute period between 14.00 and 14.20, it seems likely that
DBSERV1 was up during that time; you may assume that it was up all the time from 13.00 to 15.00.

Records number 8 and 9
Show that DBSERV1 was restarted at 18.00 and then used from 18.20 through 19.00. Again, you may
assume that DBSERV1 was up during the 20 minute interval for which you have no positive evidence.

Figure 53 on page 52 illustrates the availability of DBSERV1 thus obtained from the log. A double line
(==) represents the resource being up, and crosses (XX) represent the resource being down. A vertical bar
(|) represents a change of status. Blank spaces represent unknown status.

Figure 53. Availability of DBSERV1 between 00.00 and 24.00 on June 23, 2018

When the log collector processes a RES_DATA log, it works in essentially the same way. At the end, it
stores the resulting availability data in a database table. The table containing these data might look as
follows:

Table 29. Data table DRLAVAIL_STATUS: an example of availability data

RES_ID TYPE INT_START INT_END QUIET

DBSERV1 2018-06-23-00.00.00 2018-06-23-01.00.00 0

DBSERV1 |== 2018-06-23-01.00.00 2018-06-23-01.00.01 3600

DBSERV1 2018-06-23-01.00.01 2018-06-23-04.00.00 0

DBSERV1 === 2018-06-23-04.00.00 2018-06-23-07.00.00 1800

Defining update definitions

52 IBM Z Decision Support : Language Guide and Reference

Table 29. Data table DRLAVAIL_STATUS: an example of availability data (continued)

RES_ID TYPE INT_START INT_END QUIET

DBSERV1 2018-06-23-07.00.00 2018-06-23-08.00.00 0

DBSERV1 XXX 2018-06-23-08.00.00 2018-06-23-08.30.00 0

DBSERV1 2018-06-23-08.30.00 2018-06-23-10.00.00 0

DBSERV1 |== 2018-06-23-10.00.00 2018-06-23-10.00.01 3600

DBSERV1 2018-06-23-10.00.01 2018-06-23-13.00.00 0

DBSERV1 === 2018-06-23-13.00.00 2018-06-23-15.00.00 1800

DBSERV1 2018-06-23-15.00.00 2018-06-23-18.00.00 0

DBSERV1 |== 2018-06-23-18.00.00 2018-06-23-19.00.00 1800

DBSERV1 2018-06-23-19.00.00 2018-06-23-24.00.00 0

Each row of the table corresponds to one interval in the figure illustrating the availability. The columns
INT_START and INT_END contain the start and end of an interval, stored as timestamps. (For readability,
the timestamps are shown without the microsecond part.) The column TYPE contains a three-character
code representing the interval type. This code is similar to the symbols used in the figure. The possible
codes are listed in Table 30 on page 53:

Table 30. Interval type codes for resource availability

Interval type Resource status Resource status at
start

Resource status at end

=== Up Active Active

|== Up Started Active

==| Up Active Stopped

|=| Up Started Stopped

XXX Down Inactive Inactive

|XX Down Stopped Inactive

XX| Down Inactive Started

|X| Down Stopped Started

The column QUIET contains additional information needed by the log collector to process the evidence
that may come at a later time. It is used to bridge the gaps such as between the log records number 6 and
7, or 8 and 9. The number in the column is the maximum length, in seconds, of the gap that can be so
bridged. For example, the number 1800 in the fourth row in Table 29 on page 52 means:

If, in the future, you receive evidence that DBSERV1 was up at any time between 07.00 and 07.00 plus
1800 seconds (that is, between 07.00 and 07.30), you may assume it was up all the time between 07.00
and that instant.

The number in the column QUIET can be seen as the likely length of a "quiet" period when the resource is
not used, and therefore cannot provide any evidence of its status.

The table in the example contains availability data for only one resource, but normally contains data for
many resources. The column RES_ID then identifies the resource.

To process a RES_DATA log in the way described, and obtain the availability data shown in Table 29 on
page 52, you must provide suitable instructions to the log collector. These instructions have the form of
three update definitions, one for each record type. These update definitions might look like this:

Defining update definitions

Chapter 5. Defining update definitions 53

DEFINE UPDATE AVAIL_A
 FROM RES_DATA_A
 TO DRL.AVAIL_STATUS
 GROUP BY
 (RES_ID = RESOURCE)
 MERGE
 (TYPE = '===',
 INT_START = TIMESTAMP(START_DATE,START_TIME),
 INT_END = TIMESTAMP(END_DATE,END_TIME),
 QUIET = 1800);

DEFINE UPDATE AVAIL_B
 FROM RES_DATA_B
 TO DRL.AVAIL_STATUS
 GROUP BY
 (RES_ID = RESOURCE)
 MERGE
 (TYPE = 'XXX',
 INT_START = TIMESTAMP(DATE,TIME),
 INT_END = TIMESTAMP(DATE,TIME) + TIMEOUT SECONDS,
 QUIET = 0);

DEFINE UPDATE AVAIL_C
 FROM RES_DATA_C
 TO DRL.AVAIL_STATUS
 GROUP BY
 (RES_ID = RESOURCE)
 MERGE
 (TYPE = '|==',
 INT_START = TIMESTAMP(START_DATE,START_TIME),
 INT_END = TIMESTAMP(START_DATE,START_TIME) + 1 SECOND,
 QUIET = 3600);

Figure 54. Using the MERGE clause

In each of the three updates, you specified grouping of the records by RESOURCE. As a result, the records
are grouped so that each group consists of records containing information about the same resource. The
MERGE clause is then applied to each such group of records to derive the availability information.
Because all three update definitions specify the same target table, the information from all three types of
records is combined together before it is stored in the table.

Notice that the MERGE clause generates several rows for each group (for example, all rows in
DRL.AVAIL_STATUS are generated from the same group). In this respect, the MERGE clause is different
from the SET clause, which summarizes each group in a single row.

Understanding the MERGE clause
The MERGE clause derives from each record an interval similar to those in the DRL.AVAIL_STATUS table.
The intervals thus obtained are merged to obtain the final result.

The way the interval is derived from a record depends on the record type. A record of type A is evidence
that the resource was up from the start of a job at START_DATE, START_TIME to the end of the job at
END_DATE, END_TIME. This is represented as an "up" interval (===) between these two points of time.
The MERGE clause for records of type A specifies that interval, for example:

MERGE
 (TYPE = '===',
 INT_START = TIMESTAMP(START_DATE,START_TIME),
 INT_END = TIMESTAMP(END_DATE,END_TIME),
 QUIET = 1800);

The expressions to the right of the equal signs specify the interval. The first expression specifies the
interval type. The second and the third expression specify the start and end of the interval. The fourth
expression specifies the quiet period. (The start and end of the interval must be specified as timestamps;
the TIMESTAMP function constructs the timestamp from date and time. Table 30 on page 53 lists the
possible interval type codes.)

The names to the left of the equal signs in the MERGE clause are names of columns in the target table that
receive the specified values. These columns must be the same in all three update definitions.

Defining update definitions

54 IBM Z Decision Support : Language Guide and Reference

A record of type B is evidence that the resource was down for TIMEOUT seconds starting at DATE, TIME.
This is represented as a "down" interval (XXX), in this way:

MERGE
 (TYPE = 'XXX',
 INT_START = TIMESTAMP(DATE,TIME),
 INT_END = TIMESTAMP(DATE,TIME) + TIMEOUT SECONDS,
 QUIET = 0);

A record of type C is evidence that at START_DATE, START_TIME, the resource changed status from
"down" to "up", and then was up for some time, perhaps one second, but possibly much more. This is
represented as a one-second interval of type |== with a long quiet period:

MERGE
 (TYPE = '|==',
 INT_START = TIMESTAMP(START_DATE,START_TIME),
 INT_END = TIMESTAMP(START_DATE,START_TIME) + 1 SECOND,
 QUIET = 3600);

Figure 55 on page 55 shows the process of merging the intervals derived from the individual records. A
single line (----) in the figure represents quiet periods.

Figure 55. Merging of intervals derived from the records

Comparing actual availability to scheduled availability
After determining the actual availability of the resource as thoroughly as possible based on collected data,
you can compare that availability with the scheduled availability for the resource.

The scheduled availability is stored in a table named DRLSYS.SCHEDULE. This table is a control table and
should be set up by your system administrator. (For more information about control tables, refer to the
Administration Guide.)

The DRLSYS.SCHEDULE table contains schedules. A schedule specifies the periods during the day when a
resource is scheduled to be available. For example, the table on your system might contain the
information shown in Table 31 on page 55.

Table 31. Example of a schedule in DRLSYS.SCHEDULE table

SCHEDULE_NAME DAY_TYPE START_TIME END_TIME

STANDARD MON 08.00.00 11.00.00

STANDARD MON 12.00.00 17.00.00

•
• (Other rows for each day of the week)
•

Defining update definitions

Chapter 5. Defining update definitions 55

Table 31. Example of a schedule in DRLSYS.SCHEDULE table (continued)

SCHEDULE_NAME DAY_TYPE START_TIME END_TIME

STANDARD FRI 08.00.00 17.00.00

STANDARD SUN 02.00.00 22.00.00

STANDARD HOLIDAY 02.00.00 22.00.00

You can read in the table that, for example, the schedule named STANDARD requires a resource to be
available from 08.00.00 to 11.00.00 and from 12.00.00 to 17.00.00 on Mondays, from 08.00.00 to
17.00.00 on Tuesdays, and so on. (The codes appearing in the DAY_TYPE column are the so-called day
types. For more information on day types, see the description of the DAYTYPE function.)

Assume that you have a table DRL.AVAIL_STATUS, containing availability data as shown in Table 29 on
page 52. Assume that the schedules at your installation are defined by the above DRLSYS.SCHEDULE
table. You want to compute the total number of seconds that each resource was up when it was
scheduled to be up. You want to store the result in a data table called DRL.AVAIL_IN_SCHED that has
these columns:
Column

Contains
DTE

A date.
RESRCE

The name of a resource.
UP_TIME

The number of seconds the resource was up within the schedule on that date.

Assume further that June 22, 2018 is of type FRI (it is a Friday). This figure shows the schedule for June
22, 2018 together with the availability data for that day:

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

SCHEDULED UP TIME

XX= = ================= =========

Figure 56. Status of the resource and the schedule for June 22, 2018

To summarize the up time within the schedule, use this update definition:

DEFINE UPDATE APPLY_SCHEDULE
 FROM DRL.AVAIL_STATUS
 TO DRL.AVAIL_IN_SCHED
 APPLY SCHEDULE 'STANDARD'
 TO TYPE, INT_START, INT_END
 STATUS SCHED
 GROUP BY
 (DTE = DATE(INT_START),
 RESRCE = RES_ID)
 SET
 (UP_TIME = SUM(CASE
 WHEN SUBSTR(TYPE,2,1) = '='
 AND SCHED = '='
 THEN INTERVAL(INT_START,INT_END)
 END));

Figure 57. Using the APPLY SCHEDULE clause

Understanding the APPLY SCHEDULE clause
When executing the update definition shown above, the log collector first creates a temporary internal
table. This table is a copy of the source table, with two modifications:

Defining update definitions

56 IBM Z Decision Support : Language Guide and Reference

• The intervals that cross the boundary between the schedule periods are split at these boundaries.
• An additional column indicates if the interval is within the schedule.

You requested creation of the temporary table by means of these lines:

APPLY SCHEDULE 'STANDARD'
 TO TYPE, INT_START, INT_END
 STATUS SCHED

In the first line, you identified the schedule to be used.

In the second line, you specified where to find the availability data. The three names listed after the
keyword TO are the names of columns that contain, respectively, the interval type code, the interval start,
and the interval end.

In the last line, you specified the name for the column added to indicate the status, within or outside the
schedule. It is the name appearing after the keyword STATUS.

The temporary internal table for the availability data of Table 29 on page 52 is shown below. Notice that
an interval was split at 17.00. An equal sign (=) in the STATUS column indicates an interval within the
schedule, and an X indicates an interval outside the schedule.

Table 32. Temporary internal table created by APPLY SCHEDULE

RES_ID TYPE INT_START INT_END QUIET SCHED

DBSERV1 2018-06-23-00.00.00 2018-06-23-01.00.00 0 X

DBSERV1 |== 2018-06-23-01.00.00 2018-06-23-01.00.01 1800 X

DBSERV1 2018-06-23-01.00.01 2018-06-23-04.00.00 0 X

DBSERV1 === 2018-06-23-04.00.00 2018-06-23-07.00.00 1800 X

DBSERV1 2018-06-23-07.00.00 2018-06-23-08.00.00 0 X

DBSERV1 XXX 2018-06-23-08.00.00 2018-06-23-08.30.00 0 =

DBSERV1 2018-06-23-08.30.00 2018-06-23-10.00.00 0 =

DBSERV1 |== 2018-06-23-10.00.00 2018-06-23-10.00.01 1800 =

DBSERV1 2018-06-23-10.00.01 2018-06-23-13.00.00 0 =

DBSERV1 === 2018-06-23-13.00.00 2018-06-23-15.00.00 1800 =

DBSERV1 2018-06-23-15.00.00 2018-06-23-17.00.00 0 =

DBSERV1 2018-06-23-17.00.00 2018-06-23-18.00.00 0 X

DBSERV1 |== 2018-06-23-18.00.00 2018-06-23-19.00.00 1200 X

DBSERV1 2018-06-23-19.00.00 2018-06-23-24.00.00 0 X

Your GROUP BY and SET clauses are applied to the internal table. You specified grouping by date and
resource:

GROUP BY
 (DTE = DATE(INT_START),
 RESRCE = RES_ID)

Your SET clause specifies how to compute the total up time within the schedule:

SET
 (UP_TIME = SUM(CASE
 WHEN SUBSTR(TYPE,2,1) = '='
 AND SCHED = '='
 THEN INTERVAL(INT_START,INT_END)
 END));

Defining update definitions

Chapter 5. Defining update definitions 57

The CASE expression tests whether the middle character in TYPE is an equal sign (meaning an up
interval), and whether the interval is within the schedule. If both conditions are true, the result of CASE is
the number of seconds between INT_START and INT_END, computed using the INTERVAL function.
Otherwise, the result of CASE is a null value, meaning no data. The SUM function ignores the null values;
its result is thus the total up time within the schedule.

The contents of the table DRL.AVAIL_IN_SCHED after data collection are:

Table 33. Contents of the DRL.AVAIL_IN_SCHEDULE table after data collection

DTE RESRCE UP_TIME

2018-06-23 DBSERV1 7201

Changing and deleting update definitions
You can modify update definitions after you have stored them using:

• The DROP statement to delete the existing update definition and using the DEFINE UPDATE statement
to create a new update definition

• The ALTER UPDATE statement to change an update definition

Using the DROP statement to delete an update definition

About this task
You can use the DROP statement to delete a stored update definition. For example, assume that you
wanted to delete a stored update definition, called UPD_DEF. To delete the definition, use this statement:

DROP UPD_DEF;

You can also use the DROP statement in combination with the DEFINE UPDATE statement to change a
stored definition.

Assume that R_REC records contain fields that you did not use when you defined an update using the
record. These fields are:

• TOTR_ATT contains the total read attempts.
• TOTW_ATT contains the total write attempts.

You want to collect data from these fields and store it in these columns of DRL.RWSTAT:

• R_ATT is the number of read attempts.
• W_ATT is the number of write attempts.
• TOT_ATT is the total number of read and write attempts.

Figure 58 on page 59 shows how to use the DROP and DEFINE UPDATE statements to replace the stored
update definition.

Defining update definitions

58 IBM Z Decision Support : Language Guide and Reference

DROP UPDATE TOT_ERRS;

DEFINE UPDATE TOT_ERRS
 FROM R_REC
 TO DRL.RWSTAT
 GROUP BY
 (DATE = DATE,
 HOUR = HOUR(TIME))
 SET
 (R_ATT = SUM(TOTR_ATT)
 RD_ERR = SUM(R_ERR)
 W_ATT = SUM(TOTW_ATT)
 WR_ERR = SUM(W_ERR)
 TOT_ATT = SUM(TOTR_ATT + TOTW_ATT)
 TOT_ERR = SUM(R_ERR + W_ERR));

COMMENT ON UPDATE TOT_ERR IS 'Definition to update DRL.RWSTAT';

Figure 58. Modifying an update definition using the DROP statement

In Figure 58 on page 59, you specified that the update definition TOT_ERRS should be deleted, using
DROP UPDATE TOT_ERRS. You can then modify the definition and execute the statement again.

Using the ALTER UPDATE statement

About this task
You can also use the ALTER UPDATE statement to change the update definition TOT_ERRS. However, you
should usually use the ALTER UPDATE statement when you must make quick changes. The reason is that
when you use the ALTER UPDATE statement, you cannot see the remainder of the original DEFINE
UPDATE statement you created.

To store the additional data in columns R_ATT, W_ATT, and TOT_ATT, use the ALTER UPDATE statements
in Figure 59 on page 59.

ALTER UPDATE TOT_ERRS SET R_ATT = SUM(TOTR_ATT);
ALTER UPDATE TOT_ERRS SET W_ATT = SUM(TOTW_ATT);
ALTER UPDATE TOT_ERRS SET TOT_ATT = SUM(TOTR_ATT + TOTW_ATT);

Figure 59. Using the ALTER UPDATE statement

When you execute these statements, the additional specifications are added to the SET clause of the
TOT_ERRS update.

Defining update definitions

Chapter 5. Defining update definitions 59

Defining update definitions

60 IBM Z Decision Support : Language Guide and Reference

Chapter 6. Collecting log data

This chapter describes how to control the collection process. It also describes how to collect data from
logs that have already been processed and how to use the HEADER clause of the DEFINE LOG statement
to verify the completeness of a log during collection.

Controlling data collection

About this task
When you collect log data, the log collector processes all updates that are defined for records in the log
being collected. For example, if you specify COLLECT SOME_LOG, the log collector processes all stored
update definitions for that log and collects data based on those definitions.

When you collect log data, you can control much of the collection process. Using the COLLECT statement,
you can control:

• Which records in a log are processed
• Which tables are updated
• The size of the collect buffer
• How often records are written to the database and a commit is made
• What happens if an overflow condition occurs during the update of a table row

Limiting the collection to certain records

About this task
Sometimes, you have many record types within a log data set and you want to collect data from only
certain records. For example, assume that SOME_LOG has 5 different record types. Each record type has
a field called RC_TPE that has a value from 1 to 5 (corresponding to the record type).

Figure 60 on page 61 shows how to use the COLLECT statement to collect data from record type 3.

Note: RC_TPE must be defined using the HEADER clause of the DEFINE LOG statement. For more
information about using the HEADER clause, see “Verifying log data sets during data collection” on page
64.

COLLECT SOME_LOG
WHERE (RC_TPE=3);

Figure 60. Using the WHERE clause on the COLLECT statement

During data collection, only the update definitions and record description that are stored for record type 3
of SOME_LOG are processed.

Including and excluding data tables

About this task
You can control which data tables are updated during data collection processing using the INCLUDE and
EXCLUDE clauses on the COLLECT statement.

In Chapter 4, “Updating, storing, and managing data in tables,” on page 25, data was collected, stored in
DRL.STATS_H, summarized, and then stored in DRL.STATS_D. However, if you want to collect log data and

Collecting log data

© Copyright IBM Corp. 1994, 2017 61

update DRL.STATS_H, but you do not want to update DRL.STATS_D, use the INCLUDE clause in Figure 61
on page 62.

COLLECT RWINFO.LOG
 INCLUDE DRL.STATS_H;

Figure 61. Using the INCLUDE clauses on the COLLECT statement

When you use the INCLUDE clause, you specify that data will be collected for that table only. No other
tables (such as summary tables) are affected by the data collection.

You can also exclude certain tables. For example, if you want to collect data, but you did not want to
update DRL.STATS_D, use the COLLECT statement in Figure 62 on page 62.

COLLECT RWINFO.LOG
 EXCLUDE DRL.STATS_D;

Figure 62. Using the EXCLUDE clauses on the COLLECT statement

In Figure 62 on page 62, you specified that all tables associated with RWINFO.LOG should be updated
except DRL.STATS_D.

Including or excluding groups of tables
You can use the percent sign (%) to include or exclude groups of tables. For example, assume you stored
a number of update definitions for RWINFO.LOG. These definitions update a variety of tables, all
beginning with DRL.STATS. But, you do not want to update DRL.STATS_D.

To update all DRL.STATS tables except DRL.STATS_D, use the COLLECT statement in Figure 63 on page
62.

COLLECT RWINFO.LOG
 INCLUDE LIKE 'DRL.STAT%'
 EXCLUDE DRL.STATS_D

Figure 63. Using the percent sign (%)

Controlling when a COMMIT is made

About this task
You can use the COMMIT AFTER clause to determine when a COMMIT is made. A COMMIT makes
permanent the changes that occur in the Db2 data tables. You can specify that the log collector write its
internal buffer to the database and a COMMIT be made:

• When the buffer is full
• At the end of log data set processing
• After a certain number of records

For example, Figure 64 on page 62 shows how to use the COMMIT AFTER clause to update the database
after every 5000 records.

COLLECT SOME_LOG
 COMMIT AFTER 5000 RECORDS;

Figure 64. Using the COMMIT AFTER clause of the COLLECT statement

In Figure 64 on page 62, you specify that the log collector should update the database after every 5000
records.

When you use the COMMIT AFTER clause, ensure that the buffer is large enough to hold the records. You
determine the size of the buffer by specifying the BUFFER clause.

Collecting log data

62 IBM Z Decision Support : Language Guide and Reference

Controlling buffer size

About this task
With the BUFFER clause, you can determine the number of bytes used by the log collector's internal
buffer. Figure 65 on page 63 shows how to use the BUFFER clause to specify a buffer size of 500 000
bytes.

COLLECT SOME_LOG
 BUFFER SIZE 500K;

Figure 65. Using the BUFFER clause of the COLLECT statement

The minimum size of the buffer is 10 KB, the default is 10 MB. The maximum size of the buffer is limited
to the available virtual storage.

Note: The log collector sometimes requires more buffer space than you specify. It will abend if it cannot
obtain the extra space.

Handling table row overflows

About this task
You can determine what the log collector collector does if an overflow condition occurs during the update
of a table row. An overflow is a situation when the result of an accumulation function exceeds the capacity
of the column that should receive it.

You can specify that the log collector either continue processing, re-initializing the value that had the
overflow, or stop processing.

Collecting data more than once

About this task
Sometimes, you might need to collect data again after you have already updated data tables. The log
collector keeps track of the processed logs to prevent collecting the same data twice. If you try to collect
data on the same log more than once, the log collector issues a message saying that the log has already
been processed. However, if you must collect data from a log again anyway, use the REPROCESS keyword
on the COLLECT statement shown in Figure 66 on page 63:

COLLECT SOME_LOG
 REPROCESS;

Figure 66. Using the REPROCESS keyword

As a result, the log collector collects data from the log again.

Note: When you use the REPROCESS keyword, data that is already stored in data tables is not replaced.
Instead, new data is added to the existing data. So, if you attempt to use REPROCESS and you want to
start over (store data in an empty data table), you must first create a PURGE definition as discussed in
“Deleting data” on page 31. Then, you can reprocess a log and store the data in the data table.

Collecting data from partially processed logs

About this task
Occasionally, a system failure or other condition may cause the collection process to halt prematurely. If
the log has not been completely processed, you can restart the data collection by issuing the COLLECT

Collecting log data

Chapter 6. Collecting log data 63

statement again. The log collector will begin processing data again, starting after the last completely
processed record.

Verifying log data sets during data collection
You can use the DEFINE LOG statement to provide more than the name of the log you are defining. You
can also use the DEFINE LOG statement to verify that the log is complete and to ensure that the log
collector does not process the log more than once.

Assume that you want to define a log (called SUB_LOG). Although the log contains many different record
types, these fields are common to all records in SUB_LOG:

Table 34. Fields that are common to all records in SUB_LOG

Field name Offset Length Data format Description

R_LEN 0 2 Binary Length of the record

R_TYPE 2 2 Character Record type

R_TIME 4 6 Hexadecimal Time the record was written

R_DATE 10 4 Hexadecimal Date the record was written

S_ID 14 4 Character System identifier

P_ID 18 8 Character Program identifier

The log always contains a record of type 2 (R_TYPE = 2) as the first record in the log and a record of type 3
(R_TYPE = 3) as the last record.

Figure 67 on page 64 shows how to use the DEFINE LOG statement to define this log.

DEFINE LOG SUB_LOG
 HEADER
 (R_LEN OFFSET 0 LENGTH 2 BINARY,
 R_TYPE OFFSET 2 LENGTH 1 BINARY,
 R_TIME OFFSET 3 LENGTH 6 TIME(HHMMSS),
 R_DATE OFFSET 9 LENGTH 4 DATE(0CYYDDDF),
 S_ID OFFSET 13 CHAR(4),
 P_ID OFFSET 17 CHAR(8))
 TIMESTAMP TIMESTAMP(R_DATE,R_TIME)
 FIRST RECORD R_TYPE=2
 LAST RECORD R_TYPE=3;
COMMENT ON LOG SUB_LOG IS 'Log definition for SUB_LOG';

Figure 67. Using the HEADER, TIMESTAMP, FIRST RECORD, and LAST RECORD clauses of the DEFINE LOG
statement

The HEADER clause identifies the fields that are common to all records in SUB_LOG. You have to identify
only the fields you need. Here, you must identify R_DATE, R_TIME, and R_TYPE because you use them in
the TIMESTAMP, FIRST RECORD, and LAST RECORD clauses of the DEFINE LOG statement.

Note: The header field definitions apply only to the log definition itself. If you plan to use these fields in
the data collection process, you must define them again using the DEFINE RECORD statement.

The header fields are defined in the same way that the record fields were defined in “Defining a record”
on page 7.

When you collect log data, the first record and last record conditions are checked to determine whether
this is a complete and valid log data set. If not, an warning message is issued to the data set you specified
on the DRLOUT JCL statement.

If you specify the TIMESTAMP clause, the log collector stores the timestamps of the first and last records.
It also writes these timestamps to the DRLOUT file. Using the TIMESTAMP clause, you know the time
period covered by the log data set. You can also ensure that the log collector only processes the log once
(unless you specify the REPROCESS clause).

Collecting log data

64 IBM Z Decision Support : Language Guide and Reference

Chapter 7. How to read the syntax diagrams

The syntax diagrams in Chapter 8, “Elements of the log collector language,” on page 67 through Chapter
11, “Log collector language statements,” on page 111 graphically illustrate the coding options available
for the log collector functions and statements. These diagrams give you a quick visual method for
determining whether:

• An element is a required, optional, or default element.
• A word or value is repeatable.
• An element is a constant or a variable.

The lines and arrows in a diagram symbolize the way these elements are combined to form a valid
function or statement.

Note: The syntax diagrams show the sequence of tokens, not of individual characters. For more
information, see “How your text is processed” on page 70.

Syntax is described using these conventions:

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ►►─── symbol indicates the beginning of a statement.

The ────► symbol indicates that the statement syntax is continued on the next line.

The ►──── symbol indicates that a statement is continued from the previous line.

The ───►◄ symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the ►─── symbol and end with
the ───► symbol.

• Required items appear on the horizontal line (the main path).
required_item required_item

• Optional items appear below the main path.
required_item

optional_item

• If you can choose from two or more items, they appear vertically, in a stack. If you must choose one of
the items, one item of the stack appears on the main path.

required_item required_choice1

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.

required_item

optional_choice1

optional_choice2

If one of the items is the default, it will appear above the main path and the remaining choices will be
shown below.

How to read the syntax diagrams

© Copyright IBM Corp. 1994, 2017 65

required_item

optional_choice

optional_choice

default_choice

• An arrow returning to the left, above the main line, indicates an item that can be repeated.

required_item

.

repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

required_item

,

repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in a stack.
• Keywords appear in uppercase (for example, DEFINE RECORD). They must be spelled exactly as shown.

Variables appear in all lowercase letters (for example, record-name). They represent user-supplied
names or values.

DEFINE RECORD record-name IN LOG log-name

• A fragment contains a large element or group of elements that appear more than once in the syntax
diagram. The fragment appears at the end of the diagram, before any syntax notes.

All fragment references inside the diagram are enclosed by vertical bars. The text in a fragment
reference matches the title of the fragment it references:

Parameter One

Parameter One
ParamNameOne = FragmentOne

Parameter Two

Parameter Two
ParamNameTwo = FragmentOne

FragmentOne
field-name

* OFFSET integer

LENGTH integer

* field-format

• If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must
enter them as part of the syntax.

How to read the syntax diagrams

66 IBM Z Decision Support : Language Guide and Reference

Chapter 8. Elements of the log collector language

This chapter introduces basic elements common to all statements: keywords, identifiers, constants, and
delimiters. It explains how to enter text in a data set, and how to use blanks and comments to format and
annotate the text.

The chapter also introduces the naming convention for Db2 tables and describes how you can
parameterize your definitions using variables.

Characters
The basic symbols of the log collector language are single-byte EBCDIC characters. Within some language
elements, you can also enter sequences of double-byte characters. Each such sequence must be
enclosed between (single-byte) shift-out and shift-in characters. Unless otherwise stated, all characters
named below are single-byte EBCDIC characters.

A letter is one of the characters A through Z and a through z, or any of the three alphabetic extenders for
national languages. (The three alphabetic extenders are X'5B', X'7B' and X'7C'. Using code pages 37 and
500, they display as $, #, and @, respectively.)

A digit is any of the characters 0 through 9.

Tokens
The smallest building blocks of the language are tokens. The syntax diagrams show the sequence of
tokens, rather than individual characters. The tokens are of six kinds:

• Words
• Delimited words
• String constants
• Integer constants
• Floating-point constants
• Delimiters

Words
A word is a letter followed by zero or more characters, each of which is a letter, a digit, or the underscore
character (_).

Examples
 A ABC Length Z_121

Before processing, all lowercase letters in a word are translated to uppercase. This means, for example,
that length, Length, and LENgth are all interpreted as LENGTH.

The words are used as language keywords and as identifiers. The keywords must be as specified in the
syntax diagrams. The identifiers are names you give things you work with. See “Identifiers” on page 71
for more information about identifiers.

Delimited words
A delimited word is a sequence of one or more characters enclosed within quotation marks ("). The
sequence may contain any characters, but quotation marks may only appear in pairs (""). Any unpaired
quotation mark is interpreted as the end of the token.

Elements of the log collector language

© Copyright IBM Corp. 1994, 2017 67

Examples
 "A 2" "JobClass ""A"""

Before processing, the enclosing quotation marks are removed, and each pair of quotation marks within
the token is replaced by a single quotation mark. The two examples become A 2 and JobClass "A",
respectively. Notice that each contains a blank in the middle.

The delimited word is afterwards treated the same as a word. Thus, delimited words let you code words
that contain characters other than uppercase letters, digits, and underscore.

A delimited word may contain sequences of double-byte characters enclosed between shift-out and shift-
in characters. The quotation marks are single-byte characters; they are recognized only outside a double-
byte sequence.

The delimited words are used as identifiers. See “Identifiers” on page 71 for more information about
identifiers.

String constants
A string constant is a sequence of zero or more characters enclosed within apostrophes ('). The sequence
can contain any characters, but apostrophes may only appear in pairs ('). Any unpaired apostrophe is
interpreted as the end of the token.

Examples
 'A 2' 'a:b' 'JobClass 'A'' ''

A string constant represents the character string obtained by removing the enclosing apostrophes, and
replacing each pair of apostrophes within the string by a single apostrophe. The first three constants in
the example thus represent the strings A 2, a:b, and JobClass 'A', respectively. Notice that the first
and the third contain a blank in the middle. The last example represents the empty string: a sequence of
zero characters.

A string constant may contain sequences of double-byte characters, each enclosed between shift-out and
shift-in characters. The apostrophes are single-byte characters and will only be recognized outside a
double-byte sequence.

The maximum length of a string represented by a string constant is 254 bytes. This includes any shift
characters enclosing sequences of double-byte characters.

Integer constants
An integer constant is a sequence of one or more digits.

Examples
 62 100 32767 720176 0000000015

An integer constant represents a whole number in decimal notation. The number must not exceed
2 147 483 647. The maximum length of the token is 32 characters.

Floating-point constants
A floating-point constant is a sequence of one or more digits followed by a decimal point and zero or more
digits, optionally followed by an E and a signed or unsigned number of at most two digits.

Examples
 25.5 1000. 0.0 37589.33333 15E1 2.5E5 2.2E-1 5.E+22

Elements of the log collector language

68 IBM Z Decision Support : Language Guide and Reference

A floating-point constant represents a 64-bit floating-point number of System/390® architecture. The
number is represented in decimal notation, with Enn meaning multiplied by 10 to power nn. For example,
2.5E5 means 2.5×105, and 2.2E-1 means 2.2×10-1. The specified value is rounded to the closest value
that can be represented as a 64-bit floating-point number.

The number must not exceed 1663-1649, which is approximately 7.2E75. The smallest possible value
different from 0 is 16-65, which is approximately 5.4E-79.

The maximum length of the token is 32 characters.

Delimiters
A delimiter is any of these characters or character pairs:

() , . ; : + - / * = < > <> >= <= ||

Input lines
You enter the log collector language text in a sequential data set. The data set may have either fixed-
length records (record format F or FB) or varying-length records (record format V or VB). You can use only
positions 1 through 72 of each record. The log collector ignores anything beyond position 72. (In a fixed-
length record, position number 1 is the first byte of the record. In a varying-length record, position
number 1 is the fifth byte of the record, that is, one immediately after the record descriptor word.)

An input line is the contents of one record, starting with position 1, and ending either at position 72, or at
the end of record, whatever comes first. If you use a file with 80-byte fixed-length records, this
corresponds exactly to a line displayed by the ISPF editor. If you use a file with varying-length records, the
actual input line may be shorter than the line shown on the screen. Notice that the line then ends at the
last non-blank character, which is important if you want to code a token extending over several input
lines. When the log collector processes your text, it acts as if all input lines were concatenated into one
long string. The only case where a line break influences processing is when it terminates a line comment.
Otherwise, line breaks are ignored.

Example
Suppose you entered these lines on the editor screen (both starting at position 1):

 'ABC
 DEF'

If you use fixed-length 80-byte records, the log collector interprets this as 'ABC followed by 68 blanks
followed by DEF'. If you use varying-length records, the log collector interprets this as 'ABCDEF'.

Comments
To make your text readable, you can include explanations that are ignored by the log collector. You can
enter these explanations, or comments, anywhere between the tokens. Any sequence of comments and
blanks between the tokens is allowed and ignored. Blanks and comments are also ignored before the first
and after the last token. If you wish, you can use a comment instead of blanks to separate tokens. The
comments are of two kinds:

• Line comments
• Block comments

Line comments
A line comment is any sequence of characters starting with a double minus sign (--) up to the end of the
current input line.

Elements of the log collector language

Chapter 8. Elements of the log collector language 69

Examples
 -- This is a line comment.
 -- Another line comment. Notice that it may contain unpaired ' and " .

The comment may contain sequences of double-byte characters enclosed between shift-out and shift-in
characters. The line break that terminates the comment must occur within a single-byte sequence. If the
line ends in a double-byte sequence, the next line will be interpreted as starting in the single-byte mode,
usually resulting in an error.

Block comments
A block comment is any sequence of characters starting with slash asterisk (/*) up to the nearest
following asterisk slash (*/).

Example
 /* This is a block comment.
 Notice that it can extend over several lines.
 It can contain -- and unpaired ' or " */

The comment can contain sequences of double-byte characters enclosed between shift-out and shift-in
characters. The asterisk and slash that terminate the comment are single-byte characters and will only be
recognized outside a double-byte sequence.

How your text is processed
Before processing your text, the log collector converts it into a sequence of tokens. Understanding how
this is done may help you write the text and interpret messages about syntax errors. The process is
illustrated in this example:

Example
These two lines constitute a fragment of a log collector statement:

 /* Summarize the data */
 Group By (Job="Job Name"||'01') -- By job name with 01 appended

This fragment is first split into tokens, blanks, and comments:

 blanks:
 block comment: /* Summarize the data */
 blanks:
 word: Group
 blanks:
 word: By
 blanks:
 delimiter: (
 word: Job
 delimiter: =
 delimited word: "Job Name"
 delimiter: ||
 string constant: '01'
 delimiter:)
 blanks:
 line comment: -- By job name with 01 appended

Then, the blanks and comments are discarded, and words and delimited words are transformed as
described under “Words” on page 67 and “Delimited words” on page 67. The result is the following
sequence of tokens:

 word: GROUP
 word: BY
 delimiter: (
 word: JOB
 delimiter: =

Elements of the log collector language

70 IBM Z Decision Support : Language Guide and Reference

 word: Job Name
 delimiter: ||
 string constant: '01'
 delimiter:)

This sequence of tokens constitutes the proper input to the log collector, and is specified by syntax
diagrams. The syntax diagram specifying this particular fragment of a statement is:

GROUP BY (

,

column-name =  expression)

By comparing the sequence of tokens with this syntax, the log collector recognizes GROUP and BY as
keywords, and JOB as an identifier (a column name). By similarly using the syntax for expression, it
recognizes Job Name as an identifier. Notice that Job Name is treated as one word, with a blank in its
middle. Notice also that it would make no difference if you coded "GROUP" (with quotation marks) instead
of Group.

The log collector always processes the text in one direction. When it comes to a point where it cannot
interpret the next portion of the text as a token, blank, or comment, it does not return to try an alternative
interpretation, but signals an invalid character, skips the character, and proceeds to identify the next
token, blank, or comment. When the log collector finds that a token does not match the syntax, it does not
return to try alternatives, but signals an unexpected token. In each case, after signalling the error, the log
collector skips the rest of current statement, that is, all tokens up to, and including, the nearest semicolon
token.

Identifiers
The words and delimited words are mainly used as names of things you work with: logs, records, fields
within records, and so on. When used in this way, they are called identifiers.

You select the identifiers. By coding an identifier as a delimited word, you can use any sequence of
characters as the name, including blanks and double-byte characters. In general, the only restriction on
your choice of an identifier is that it must not exceed 18 bytes. The restrictions on identifiers used for
specific purposes are:

• The name of a log cannot exceed 16 bytes.
• The name of a record cannot have the asterisk (*) as both the first and the last character.
• The name of a table column must consist of uppercase letters, digits, and underscore characters. It

must start with a letter and must be distinct from all SQL reserved words.
• The name of a file (a ddname) and the name of a program cannot exceed 8 bytes. It must consist of

uppercase letters and digits, and must start with a letter.

All lengths include any shift characters enclosing the sequences of double-byte characters.

In some contexts, an identifier may be confused with a keyword. For this reason, do not use the words
CASE, CURRENT, LOOKUP, NOT, and USER as names of anything you might reference within an expression;
in particular, as names of fields in a record.

Table names
The Db2 tables have names that consist of two identifiers separated by a period (.). Both identifiers must
consist of uppercase letters, digits, and underscore characters, and each must start with a letter. They
must be distinct from all SQL reserved words. The first identifier cannot exceed 8 bytes.

Example
 ABC.DAYSTAT_1

Elements of the log collector language

Chapter 8. Elements of the log collector language 71

The first identifier (ABC in this case) is called the prefix, and the table name written in this form is called a
qualified table name. You can also code a single identifier as a table name. Such an unqualified table
name is implicitly prefixed with the user ID of the user who runs the log collector. Thus, for example, if
your user ID is ABC, then specifying DAYSTAT_1 as a table name is equivalent to specifying
ABC.DAYSTAT_1.

If not stated otherwise, a table name anywhere in this manual means a qualified or unqualified table
name.

Statements
The input in the log collector language is a sequence of statements. The statements must be separated by
semicolons (;). The semicolons are not considered a part of the statement and are not shown in syntax
diagrams.

Using variables to modify your text
Sometimes it is convenient to leave certain details open, and fill them in at the last moment. Suppose that
you are writing definitions for some installation, and you do not know the prefix used for table names at
that installation. You can then code everything, except for the prefix. Instead of the prefix, you can write a
marker that will be replaced by the prefix at a later time. This marker, called a variable marker, has the
form of an ampersand (&) immediately followed by a word. For example, you can write:

 DEFINE UPDATE XYZ FROM &PREFIX.JOBSTAT_D TO ...

The variable marker is in this case &PREFIX. One way of specifying the actual prefix is by executing a log
collector statement such as:

 SET PREFIX='ABC';

As explained in “SET” on page 158, this statement defines a variablePREFIX with valueABC. From that
moment on, whenever the log collector encounters the marker &PREFIX, it logically replaces the marker
by the value of the variable PREFIX. Thus, your statement will be processed as if you have coded:

 DEFINE UPDATE XYZ FROM ABC.JOBSTAT_D TO ..

You may code the variable marker at any place you would code a token. To properly terminate it, you
might have to follow it with a blank or a comment. Any lowercase letters in the variable marker are
translated to uppercase before the marker is used to identify the variable. The replacement string can
consist of any number of tokens, blanks, and/or comments.

An alternative way to define a variable is to code &PREFIX=ABC as a part of the parameter string supplied
to the log collector at the invocation. See “Specifying JCL and parameters” on page 186 for details.

If you use variable markers, fill in the details when the log collector processes your text. If your text is, for
example an update definition, this means all details are fixed before the definition is stored. Another
method, described in “Obtaining the value of a variable” on page 76, lets you postpone this until the
moment when the stored definition is actually used.

Elements of the log collector language

72 IBM Z Decision Support : Language Guide and Reference

Chapter 9. Values and expressions

This chapter discusses the data items, or values, processed by the log collector. It introduces the notion
of a data type and null value, and describes how values are specified by means of expressions.

Expressions are important tools for defining what to do with the data, and are used in almost all
statements of the log collector language. You will in most cases use rather simple expressions, consisting
of a single identifier or a constant, or perhaps two such items and an operator. However, you can use the
constructions described here to specify calculations of almost any complexity. The only limitation is the
size of the expression, which cannot exceed 2 000 bytes. The size of the internal representation of the
expression is also limited, which sometimes might limit the external form to less than 2 000 bytes. There
is also a limit on the nesting depth of certain structures (such as parentheses), but you are unlikely to
reach it.

An expression that specifies a truth value (that is, one of the values true and false) is called a condition.

This chapter does not cover everything about expressions. The special case of an expression called a
function call is discussed in Chapter 10, “Functions,” on page 91.

Data types
The main task of the log collector is to process data. The smallest unit of data processed by the log
collector is called a value. A value can be obtained, for example, from a field in a record, from a Db2 table,
stated explicitly in your definition, or computed from other values. The values handled by the log collector
are:

• Integers, such as 5, 0, or -127
• Floating-point numbers, such as 3.333 or 1.5×107

• Character strings, such as xy%(?z or ABC
• Dates, such as April 15, 2000
• Times, such as 16 hours 32 minutes 55.123456 seconds
• Timestamps, such as 16 hours 32 minutes 55.123456 seconds on April 15, 2000
• Truth values, such as true or false

These seven kinds are called data types. For convenience, the integers and floating-point numbers are
together called numbers, or numeric values. The dates, times, and timestamps are together called date/
time values.

Integers
An integer is a whole number in the range -2147483648 to +2147483647.

Floating-point numbers
A floating-point number is a number that can be represented as a normalized 64-bit floating-point
number of System/390 architecture. The numbers that can be represented in this way have absolute
values up to 1663-1649, which is approximately 7.2×1075. The smallest absolute value different from 0
that can be represented is 16-65 (approximately 5.4×10-79).

Character strings
A character string, or string, is a sequence of 0 to 254 bytes. It can contain sequences of double-byte
characters. Each sequence of double-byte characters must begin with a shift-out character, and end with
a shift-in character. The length of the string is the number of bytes in the sequence. The string of length 0
is called the empty string.

Values and expressions

© Copyright IBM Corp. 1994, 2017 73

Dates
A date is a three-part value (day, month, year) designating a day according to the Gregorian calendar. The
range of the year part is 1 to 9␠999. The range of the month part is 1 to 12. The range of the day part is 1
to x, where x depends on the month.

All computations on dates are performed as if the Gregorian calendar was in effect since year 0001.

Times
A time is a four-part value (hour, minute, second, and microsecond) designating a time of day under a 24-
hour clock. The range of the hour part is 0 to 24, the range of the minute and second part is 0 to 59, and
the range of the microsecond part is 0 to 999␠999. If the hour is 24, the remaining parts must be 0.

Timestamps
A timestamp is a seven-part value (year, month, day, hour, minute, second, and microsecond) that
designates a point in time: a day and a time of that day. The year, month, and day designate the day as
specified under “Dates” on page 74. The hour, minute, second, and microsecond designate the time as
specified under “Times” on page 74.

Truth values
A truth value is one of the values true or false.

Missing and invalid data
In some situations, the value specified by your definition cannot be obtained. For example, you specify a
value from a field in a record, but the record is too short to contain the field. Alternatively, the record
section that should contain the field is absent, or the field is present, but contains non-valid data.

It also happens that the value has been obtained from a field, but you specified an operation on it that
cannot be performed. For example, you specified that you want the result of dividing the value from a field
A by the value from a field B. If this second value happens to be 0, the requested result cannot be
obtained; you cannot divide by 0.

Null value
For the purpose of specifying what to do with data, it is convenient to treat an absence of data as just
another value, distinct from all other values handled by the log collector. This special value is called the
null value.

The null value is useful because whenever you specify that a value should be obtained in some way, you
can be sure that you always obtain a value (sometimes null, and sometimes not). You need not treat
separately the cases of data being present and data being absent.

The rules of the log collector language specify exactly when the result of each action is null. For example,
the value obtained from an absent or an invalid field is null, the result of division by 0 is null, and so on.
The rules also specify what happens when an operation has null as one of the arguments. For example,
the result of addition or multiplication is null whenever one of the operands is null. Other operations, such
as SUM or MAX, just ignore null operands. These rules correspond to how you normally understand
absence of data. (For example, if you do not have the value A or B, you do not have A+B either.) If the
rules do not suit your purpose, you can always replace a null value by a default. You can use the VALUE
function for this purpose. (See “VALUE” on page 108).

Remember that the null value is not the same as the empty string. The former is an absence of data; the
latter is a well-defined data item, namely a string of 0 bytes.

Values and expressions

74 IBM Z Decision Support : Language Guide and Reference

Unknown truth value
If you specify a test such as A>10, and you do not have A (that is, A is null), you cannot decide whether the
result of the test is true or false. You simply do not have any result. This absence of a truth value has
slightly different consequences than absence of other kinds of value. It is therefore not represented by a
null value, but by a new value called unknown. You may regard it as a third truth value besides true and
false.

If you do not use the logical operator NOT, you may treat unknown as equivalent to false. This is so
because whenever a truth value is used, the outcome depends only on whether the value is true or not
true.

If you use the operator NOT, however, you cannot treat these values as equivalent. This is so because
NOT(false)=true, while NOT(unknown)=unknown.

Error handling
Some null values result from situations that are normal, such as absent field or absent section. Other null
values result from errors, such as invalid data or a violation of language rules.

If the log collector obtains null value as the result of an error, you will be notified in some way that there
was an error. The notification depends on the statement that detected the error. For example, the
COLLECT statement issues a message that values were set to null because of error; the LIST RECORD
statement represents the null values resulting from an error in a special way.

Some errors are detected at an early stage, before they can result in a null value. For example, if you by
mistake write 15/0 in your definition, you will receive an error message, and your definition will not be
accepted. Notice, however, that not all errors of this kind are detected early. For example, if you code
TIMESTAMP('00.00.00.000000'), the log collector will not detect the error (time string instead of
timestamp string) until it uses your definition and tries to evaluate the TIMESTAMP function.

Some simple ways of specifying a value

About this task
This section discusses two ways in which you can specify a value:

• Write the value explicitly
• Write the name of the value, or of something that holds the value

These two ways are the simplest forms of an expression. Notice that a truth value cannot be specified in
any of these two ways. It can only be computed from other values.

Specifying a value explicitly

About this task
You can specify a value explicitly by writing an integer constant, a floating-point constant, or a string
constant. For example:

 720176 2.2E-1 'JobClass 'A'

(For more information about constants, see “Tokens” on page 67).

Using the integer constant or floating-point constant alone, you can only represent non-negative
numbers. To represent a negative number, you can use the minus operator (-) in front of the constant. See
“Arithmetic operations” on page 79.

You cannot explicitly write a date/time value or a truth value, because there are no date/time constants or
truth constants. To write a specific date/time value, you can use a function and a date/time string, as

Values and expressions

Chapter 9. Values and expressions 75

explained in “Date/time strings” on page 77. To write a specific truth value, you can use a comparison
involving two constants, such as 0=0. See “Comparisons” on page 81.

Specifying a value using an identifier

About this task
The most common way to specify a value is to write an identifier. The identifier is usually the name of
something that holds a value, for example, a field in a record, or a column in a Db2 table. It may also be
the name of the value itself, for example, a value defined by means of a LET clause of DEFINE UPDATE
statement. For more information about identifiers, see “Tokens” on page 67 and “Identifiers” on page 71.

Whenever a syntax diagram for a statement specifies an expression, the description of the statement
shows which identifiers are allowed in that expression. For example, in the DEFINE RECORD statement,
the expression defining the offset of a section can contain only names of fields in certain previously
defined sections. If you specify another name (for instance, the name that is not used in the definition, or
the name of a section in the record, or the name of a field that cannot be referenced), you receive an error
message stating that the name is unknown, or that you cannot use it in this context.

Some expressions cannot contain any identifiers, for example, the expression following the keyword
PARM in the statements DEFINE LOG and DEFINE RECORDPROC. If you use an identifier there, you
receive an error message stating that the name is unknown.

Obtaining the value of a variable

About this task
As explained in “SET” on page 158, you can define a named string, called a variable, by executing a log
collector statement such as

 SET SYSTEM_ID = 'LDGMVS1';

This statement defines the variable SYSTEM_ID having value LDGMVS1. The variable remains defined,
with its value unchanged, until the end of the current log collector run, or until you change its value by
executing another SET statement. An alternative way of defining a variable is to code
&SYSTEM_ID=LDGMVS1 as a part of the parameter string supplied to the log collector at the invocation.
See “Specifying JCL and parameters” on page 186 for details.

You can obtain the value of a variable by coding a variable reference. A variable reference consists of a
colon (:) followed by the variable name, for example, :SYSTEM_ID.

Using a variable reference has the effect of modifying your stored definition just before it is used. Suppose
you have stored an update definition containing the fragment:

 SYSID = :SYSTEM_ID

If you execute a COLLECT statement using this update definition, this fragment will have the same effect
as if you have coded SYSID = 'LDGMVS1' (assuming the variable was defined as in the example above).

A variable reference is a special case of expression that can be used only where an expression is allowed.
You can also use variable markers to modify your statements, “Using variables to modify your text” on
page 72. This method lets you replace any part of your text, not only an expression. However, variable
markers modify the text when your definition is stored; by using a variable reference, you postpone the
modification until the definition is used.

Values and expressions

76 IBM Z Decision Support : Language Guide and Reference

Obtaining the current date and time

About this task
The log collector maintains a timestamp identifying the time when it started the execution of the current
statement. You can obtain this timestamp, or the date or time part of it, by writing one of these pairs of
keywords:

 CURRENT DATE
 CURRENT TIME
 CURRENT TIMESTAMP

These values are of type date, time, and timestamp, respectively. Because these values correspond to the
start of the current statement, you obtain the same value each time you use these keywords within the
same statement.

Obtaining the user ID

About this task
The log collector also has access to the user ID of the user running it. You can obtain this user ID by
writing:

 USER

The value specified by this keyword is a character string of length 8.

Date/time strings

About this task
To write specific date/time values, you must code expressions explicitly, for example:

 DATE('2019-06-27')
 TIME('10.32.55.123456')
 TIMESTAMP('2019-06-27-10.32.55.123456')

These expressions are specific cases of function calls, discussed in Chapter 10, “Functions,” on page 91.
The character strings 2019-06-27, 10.32.55.123456, and 2019-06-27-10.32.55.123456 are
examples of date/time strings. Date/time strings are character strings of a specific format.

Date string
A character string that represents a date in the form yyyy-mm-dd where yyyy is the year, mm is the
month, and dd is the day.

Time string
A character string that represents a time in the form hh.mm.ss.uuuuuu, where hh is the hour, mm is
the minute, ss is the second, and uuuuuu is the microsecond.

Timestamp string
A character string that represents a timestamp in the form yyyy-mm-dd-hh.mm.ss.uuuuuu where
yyyy, mm, dd, hh, mm, ss, and uuuuuu are as above.

You will most likely use date/time strings to write specific date/time values. These strings are more than a
substitute for date/time constants; all that was stated earlier also applies to date/time strings obtained as
a result of your processing, not only those specified as constants.

DATE function
The DATE function converts a date string to a date. The expression such as DATE('2019-06-27')
specifies the result of such conversion, here, the date June 27, 2000. In a similar way, the TIME function

Values and expressions

Chapter 9. Values and expressions 77

converts a time string to a time, and TIMESTAMP converts a timestamp string to a timestamp. The
expression TIME('10.32.55.123456') specifies thus the time 10 hours 32 minutes 55.123456
seconds, and the expression TIMESTAMP('2019-06-27-10.32.55.123456') specifies the timestamp
10 hours 32 minutes 55.123456 seconds on June 27, 2000.

Automatic conversions
In some special cases, you can code a date/time string instead of a date/time value, and the log collector
automatically performs the conversion for you. For example, if CREATION_DATE specifies a date, you may
code CREATION_DATE<'2019-06-25'. As described in “Comparisons” on page 81, the log collector
will then automatically convert the date string to a date, and compare the result with the date specified by
CREATION_DATE. The information on such an automatic conversion is found in the description of the
operation that implies it.

Labeled durations
A labeled duration specifies a number of time units. It is used for incrementing or decrementing date/time
values (see “Incrementing and decrementing date/time values” on page 80.) It is also used to specify
the rounding factor for the ROUND function (see “ROUND” on page 103.) Note that a labeled duration by
itself does not specify any value.

The syntax of labeled duration follows.

count YEAR

YEARS

MONTH

MONTHS

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

MICROSECOND

MICROSECONDS

count
constant

identifier

function

(expression)

constant
Is a constant that explicitly specifies a value. See “Specifying a value explicitly” on page 75.

identifier
Is the name of a value or of something that holds a value. It specifies that value. See “Specifying a
value using an identifier” on page 76.

function
Is a function call. It specifies the result of a function. See Chapter 10, “Functions,” on page 91.

Values and expressions

78 IBM Z Decision Support : Language Guide and Reference

(expression)
Specifies the value of expression. See “Expressions” on page 87.

The count must specify a number. If this number is a floating-point number, it is converted to an integer
by discarding the fractional part.

Examples
 2 YEARS
 X DAYS
 (N/60) MINUTES

Using operators

About this task
You can specify a value either by writing it explicitly, or by writing its name. Alternatively, you can specify a
value as a result of modifying or combining other values. This section discusses how to specify new values
by:

• Arithmetic operations on numbers
• Incrementing and decrementing of date/time values
• Concatenation of strings
• Comparisons
• Pattern matching
• Logical operations on truth values

All these operations are specified by an operator written between the operands (an infix operator), or in
front of an operand (a prefix operator). A much greater variety of operations, using another format, is
described in Chapter 10, “Functions,” on page 91.

Arithmetic operations
You can apply the prefix operator plus (+) or minus (-) to any numeric value.

Examples
 -DOWN_TIME +40 -23.456 -1E8

The result is of the same type as the operand. The prefix plus does not change its operand. The prefix
minus reverses the sign of its operand.

You can apply any of the infix operators plus (+), minus (-), multiply (*), and divide (/), to any pair of
numeric values.

Examples
 A+B N_DATASETS-5 COUNT*1E-6 RESP_TIME/60

The result depends on the operand types:

• If both operands are integers, the result is an integer. The operation is performed using integer
arithmetic. The division is performed so that the remainder has the same sign as the dividend.

• If both operands are floating-point numbers, the result is a floating-point number. The operation is
performed using long floating-point operations of System/390.

Values and expressions

Chapter 9. Values and expressions 79

• If one of the operands is an integer and the other a floating-point number, the integer is converted to a
floating-point number. The operation is then performed on the result of the conversion, using floating-
point arithmetic. The result is a floating-point number.

The result of dividing an integer by another integer is also an integer. Thus, for example, if RESP_TIME is
an integer less than 60, the result of RESP_TIME/60 is 0. If you want the exact result, write RESP_TIME/
60.0 instead. The right-hand operand is then the floating-point number 60.0; the left-hand operand,
RESP_TIME, is converted to a floating-point number, and the result is a floating-point number.

For all operators (both prefix and infix), the result is null if any of the operands is null. If the result is an
integer, the result must be within the range of integers. If the result is a floating-point number, the result
must be within the range of floating-point numbers. The right-hand operand of a divide operator must not
be 0.

Incrementing and decrementing date/time values

About this task
You can modify a date/time value by adding or subtracting a specified number of time units. The operation
is expressed by means of an infix operator plus (+) or minus (-). The left-hand operand is the date/time
value. The right-hand operand must be a labeled duration. (See “Labeled durations” on page 78.)

Examples
 CURRENT DATE + 2 MONTHS
 INTV_END - X SECONDS
 JOB_START + (N/60) MINUTES

These expressions specify, respectively: the date two months from now, the time X seconds before the
time INTV_END, and the timestamp N/60 minutes after the timestamp JOB_START.

The number of time units specified by the labeled duration can be negative or 0. Adding a negative
number of units is the same as subtracting that number of units. Subtracting a negative number of units is
the same as adding that number of units.

The result of the operation is null if the date/time value is null, or if the count in the labeled duration is
null.

Incrementing and decrementing dates

About this task
If the left-hand operand is a date, the right-hand operand must be a labeled duration of years, months, or
days. The result is a date.

Adding or subtracting a number of years affects the year part of the date. The month is unchanged, and so
is the day unless the result would be February 29 of a non-leap-year. In that case, the day is changed to
28.

Adding or subtracting a number of months affects the month and, if necessary, the year. For the purpose
of this operation, a month is the equivalent of a calendar page. Adding or subtracting months is like
turning the pages of a calendar. The day part is unchanged unless the result would be invalid (September
31, for example). In that case, the day is changed to the last day of the month.

Adding or subtracting a number of days affects the day and, if necessary, also the month and year.

The result must be within the range of dates.

Values and expressions

80 IBM Z Decision Support : Language Guide and Reference

Incrementing and decrementing times

About this task
If the left-hand operand is a time, the right-hand operand must be a labeled duration of hours, minutes,
seconds, or microseconds. The result is a time with an hour part in the range from 0 to 23.

Any overflow or underflow from the hour part is discarded.

Incrementing and decrementing timestamps

About this task
If the left-hand operand is a timestamp, the right-hand operand can be a labeled duration of any units.
The result is a timestamp with an hour part in the range from 0 to 23.

Adding or subtracting a number of years, months, or days affects the date part as described in
“Incrementing and decrementing dates” on page 80. Adding or subtracting a number of hours, minutes,
seconds, or microseconds may cause an overflow or underflow from the hour part. This overflow or
underflow is carried on to the day part and affects the date part in the same way as adding or subtracting
a number of days.

The result must be within the range of timestamps.

Concatenation of strings
You can concatenate strings using two vertical bars (||) as an infix operator.

Example
 JOB_NAME || '01'

The result is a character string. The length of the result cannot exceed 254. If any of the strings being
concatenated is null, the result is null.

Comparisons
You can compare two values using one of the infix operators equal (=), not equal (<>), greater than (>),
less than (<), greater than or equal (>=), less than or equal (<=). The result is a truth value. If one of the
compared values is null, the result is unknown.

Examples
 A>10 JOB_NAME<'ABC' DATE<>'2016.04-15'

Numbers must be compared with numbers. Character strings must be compared with character strings
and date/time values. Date/time values must be compared with character strings or date/time values of
the same type. No other comparisons are allowed.

Numbers are compared by their algebraic value.

• If both numbers are floating-point, they are compared using long floating-point operation of System/
390. Two floating-point numbers are considered equal only if their normalized forms have identical bit
configurations.

• If one of the numbers is an integer and the other a floating-point number, the integer is converted to a
floating-point number. The comparison is then performed with the result of the conversion.

Character strings are compared byte by byte, left to right. If the strings are not the same length, the
comparison is made with a temporary copy of the shorter string that has been padded on the right with
blanks so that it has the same length as the other string.

Values and expressions

Chapter 9. Values and expressions 81

Two strings are equal if they are both empty or if all corresponding bytes are equal. Otherwise, their
relation is determined by the comparison of the first unequal pair of bytes.

When a character string is compared with a date/time value, it must be a valid date/time string of the
corresponding kind. The string is converted to a date/time value and the comparison is performed on the
result.

All comparisons of date/time values are chronological; the value representing the later point of time is
considered to be greater.

Because the hour part may range from 0 to 24, certain pairs of different timestamps represent the same
time. When such timestamps are compared, the one with a greater date part is considered greater. For
example, the result of this comparison is true:

TIMESTAMP('2018-02-23-00.00.00.000000')>TIMESTAMP('2018-02-22-24.00.00.000000')

(However, that the INTERVAL function computes the interval between these timestamps as 0.)

Pattern matching
You can use the infix operator LIKE to test whether a string matches a given pattern. This operator can
only be used within a lookup expression. (Pattern matching can also be specified in the INCLUDE or
EXCLUDE clause of certain statements.)

Examples
 JOB_NAME LIKE '%A_CD'
 SYSTEM_ID LIKE 'BU%'

Both operands must be character strings. The left-hand operand is the string being tested. The right-hand
operand is the pattern.

The result is a truth value. The result of the operation is true if the string matches the pattern. The result is
false if the string does not match the pattern. The result is unknown if the string or the pattern is null.

The string matches the pattern if it can be divided into substrings of zero or more characters, matching
the consecutive characters of the pattern in such a way that:

• Each percent sign in the pattern is matched by a sequence of zero or more arbitrary characters in the
string.

• Each underscore character in the pattern is matched by an arbitrary character in the string.
• Any other character in the pattern is matched by an identical character in the string.

If the pattern is an empty string, the only string matching it is the empty string. Also, an empty string
matches a pattern consisting of one or more percent signs.

Examples
The string ABCAXCD matches the pattern %A_CD. The required partition is:

 ABC A X C D
 | | | | |
 % A _ C D

Another string matching this pattern is ABCD:

 A B C D
 | | | | |
 % A _ C D

The strings AB, XYZCD, and AXYCD do not match the pattern.

Double-byte characters are not recognized in pattern matching.

Values and expressions

82 IBM Z Decision Support : Language Guide and Reference

Logical operations
You can apply the prefix operator NOT to any truth value. The result is defined as follows for operand p:

Table 35. Logical operation NOT

p NOT p

True False

False True

Unknown Unknown

You can apply the infix operators AND, OR to any pair of truth values. The result is defined as follows for
operands p and q:

Table 36. Logical operations AND and OR

p q p AND q p OR q

True True True True

True False False True

True Unknown Unknown True

False True False True

False False False False

False Unknown False Unknown

Unknown True Unknown True

Unknown False False Unknown

Unknown Unknown Unknown Unknown

Testing for null

About this task
Because the result of any comparison involving a null value is unknown, you cannot use a comparison
operator to test whether a given value is null. To test whether a value is null, you can code the keywords
IS NULL or IS NOT NULL after it.

Examples
 JOB_NAME IS NULL
 START_TIME IS NOT NULL

The result is true or false depending on whether the tested value is null. The value being tested must not
be a truth value.

Case expressions
A case expression specifies a value selected by testing one or more conditions. It has this format:

Values and expressions

Chapter 9. Values and expressions 83

CASE

.

WHEN condition THEN expression

ELSE expression

END

WHEN condition THEN expression
Defines one of the possible cases. The case is applicable if the value of condition is true. The result of
the case-expression is equal to the result of expression in the applicable case. If several cases are
applicable, the result is defined by the first of them. If none of the cases is applicable, the result of
case-expression is defined by the ELSE clause.

The expressions in all case definitions must specify values of the same type.

ELSE expression
Defines the result of the case-expression if none of the cases is applicable. The result of the case-
expression is then equal to the result of expression. If the ELSE clause is absent, the result is null.

The expression in the ELSE clause must specify a value of the same type as expressions in the case
definitions.

An alternative form of case-expression is:

CASE expression

.

WHEN expression THEN expression

ELSE expression

END

CASE expression
The expression is evaluated and the result is compared with results of expressions appearing in the
WHEN clauses.

WHEN expression THEN expression
Defines one of the possible cases. The case is applicable if the result of the expression following
WHEN is equal to the result of the expression appearing in the CASE clause (and neither of them is
null). The result of the case-expression is equal to the result of the expression appearing after THEN
in the applicable case. If several cases are applicable, the result is defined by the first of them. If none
of the cases is applicable, the result of case-expression is defined by the ELSE clause.

All expressions following WHEN must specify values of the same type as the expression in the CASE
clause. All expressions following THEN must specify values of the same type (but not necessarily the
same as the expressions following WHEN).

ELSE expression
Defines the result of the case-expression if none of the cases is applicable. The result of the case-
expression is then equal to the result of expression. If the ELSE clause is absent, the result is null.

The expression in the ELSE clause must specify a value of the same type as expressions following
THEN.

Examples
 CASE
 WHEN X='A12' THEN 1
 WHEN Y>'BCD' THEN 2
 ELSE 0
 END

Values and expressions

84 IBM Z Decision Support : Language Guide and Reference

If X has the value A12, the result is 1; otherwise, if Y has a value greater than BCD, the result is 2;
otherwise the result is 0.

 CASE X
 WHEN 'A12' THEN 1
 WHEN 'B23' THEN 2
 END

If X has the value A12, the result is 1; if X has the value B23, the result is 2; otherwise the result is null.

Lookup expressions
A lookup expression specifies a value obtained from a table. It has this form:

LOOKUP lookup-column IN table-name

ORDER BY order-column

WHERE

lookup-condition
,

expression compare-operator column-name

expression LIKE column-name

compare-operator
 =

 <>

 <

 >

 <=

 >=

IN table-name
Identifies the lookup table, that is, the table from which to obtain the value.

LOOKUP lookup-column
Identifies the column of the lookup table from which to obtain the value.

ORDER BY lookup-column
Identifies a column in the lookup table that can be used to specify which entry is selected when
several entries match the lookup condition.

WHERE lookup-condition
Identifies the row of the lookup table from which to obtain the value.

expression compare-operator column-name
Is a comparison, as described in “Comparisons” on page 81. The names in expression are names
belonging to the context where the lookup expression is used. The column-name is the name of a
column of the lookup table.

expression LIKE column-name
Specifies pattern matching as described in “Pattern matching” on page 82. The names in expression
are names belonging to the context where the lookup expression is used. The column-name is the
name of a column of the lookup table.

AND
Is the logical operator defined in “Logical operations” on page 83.

Values and expressions

Chapter 9. Values and expressions 85

How the result is obtained
The result of the lookup expression is defined by this process:

• Replace each expression in the lookup condition by its value.
• Evaluate the resulting condition for each row of the lookup table, replacing each column-name by a

value from that row.
• If the condition is true for exactly one row, obtain the result from that row.
• If the condition is true for several rows, select one of them:

– If an ORDER BY parameter is specified, select the row containing the lowest value in the order
column. If several rows contain the same value in the order column then select the row from among
these rows according to the remaining rules below.

– If the condition does not contain LIKE operators, select any row with a true condition (not defined
which).

– If the condition contains one or more LIKE operators, select among the rows with a true condition,
the row with the most specific pattern.

Obtain the result from the selected row.
• If the condition is not true for any row, the result of the lookup expression is null.

(The described process is just a way of defining the result. The actual method used by the log collector
does not necessarily require that all rows are tested.)

Which is the most specific pattern
To see which of two patterns is more specific, you can use this method. Represent each pattern by a string
of letters A, U, X, and Z, as follows:

• Represent each percent sign by X.
• Represent each underscore by U.
• Represent each of the remaining characters by A.
• Add Z at the end.

The resulting string is called the pattern scheme. The more specific pattern is one whose pattern scheme
comes first in alphabetical order.

If the lookup condition contains more than one LIKE operator, compare the patterns obtained by
concatenating the right-hand operands of all LIKE operators in the order they appear in the condition.

Example A
Suppose the table ACCOUNTING_PERIODS contains this data:

 START_DATE END_DATE PERIOD

 2019-01-01 2019-01-28 00/01
 2019-01-29 2019-02-25 00/02
 2019-02-26 2019-03-25 00/03
 : : :
 : : :

An example of a lookup expression using this table is:

 LOOKUP PERIOD IN ACCOUNTING_PERIODS
 WHERE SMF72DTE >= START_DATE
 AND SMF72DTE <= END_DATE

Assume that SMF72DTE is a field containing the date 2019-01-30. To evaluate the lookup expression,
replace SMF72DTE in the lookup condition by its value. The result is:

Values and expressions

86 IBM Z Decision Support : Language Guide and Reference

 DATE('2019-01-30') >= START_DATE AND DATE('2019-01-30') <= END_DATE

Now, evaluate this condition for each row of ACCOUNTING_PERIODS, using the values of START_DATE
and END_DATE from that row.

The condition is true only for the second row. Obtain the result of the lookup expression from the PERIOD
column in that row. The result is 90/02.

If SMF72DTE contains the date 2018-12-31, the condition is not true for any row, and the result of the
lookup expression is null.

Example B
Suppose the table TRANSACTION_CODES contains this data:

 TRANS SYSTEM TRAN
 ID ID CODE

 FA21 CICSPROD T1
 B% CICSPROD T2
 BU% CICSPROD T3
 F% CICSPROD T4
 X% CICSTEST T5
 Y% CICSTEST T6
 BUS% % T7
 BUS_ % T8

An example of a lookup expression using this table is:

 LOOKUP TRAN_CODE IN TRANSACTION_CODES
 WHERE SMF67SYS LIKE SYSTEM_ID
 AND SMF67TRAN LIKE TRANS_ID

If SMF67SYS is a field containing the string CICSPROD and SMF67TRAN is a field containing the string
BUS1, the condition evaluated for each row of the table is:

 'CICSPROD' LIKE SYSTEM_ID AND 'BUS1' LIKE TRANS_ID

This condition is true for rows 2, 3, 7, and 8. These rows, with their concatenated patterns and pattern
schemes (sorted by pattern scheme), are:

 TRANS SYSTEM TRAN concatenated pattern
 ID ID CODE pattern scheme
 ----- -------- ---- ------------ ------------
 BU% CICSPROD T3 CICSPRODBU% AAAAAAAAAAXZ most specific
 B% CICSPROD T2 CICSPRODB% AAAAAAAAAXZ
 BUS_ % T8 %BUS_ XAAAUZ
 BUS% % T7 %BUS% XAAAXZ most general

The row with the most specific pattern is one where column TRAN_CODE contains the string T3. The
result of the lookup expression is T3.

Important
To achieve acceptable performance, lookup tables are read into storage buffers at the start of processing.
This means that the tables should not be too large. It also means that any changes to a lookup table
resulting from a collect operation do not affect the result of a lookup before the collect is completed.

Expressions
This diagram specifies the general form of expression that you can use wherever the syntax specifies an
expression. The diagram does not reflect all the rules that you must follow when you use operators. You
can find these rules in section “Using operators” on page 79.

Values and expressions

Chapter 9. Values and expressions 87

,

 +
 -

constant

identifier

:identifier

case-expr

lookup-expr

function

(expression)

CURRENT DATE

CURRENT TIME

CURRENT TIMESTAMP

USER

.

 +
 -

labeled-duration

operator
 +
 -

 *

 /

 ||

constant
A constant that explicitly specifies a value. See “Specifying a value explicitly” on page 75.

identifier
The name of a value or of something that holds a value. It specifies that value. See “Specifying a value
using an identifier” on page 76.

:identifier
Specifies the value of a variable. See “Obtaining the value of a variable” on page 76.

case-expr
A case expression. See “Case expressions” on page 83.

lookup-expr
A lookup expression. See “Lookup expressions” on page 85.

function
A function call. It specifies the result of a function. See Chapter 10, “Functions,” on page 91.

(expression)
Specifies the value of expression.

labeled-duration
A labeled duration. See “Labeled durations” on page 78.

CURRENT DATE ;CURRENT TIME ;CURRENT TIMESTAMP
Specify current date, time, or timestamp. See “Obtaining the current date and time” on page 77.

USER
Specifies current user ID. See “Obtaining the current date and time” on page 77.

+ - * / ||
Are operators. Their meaning is specified in “Using operators” on page 79.

Values and expressions

88 IBM Z Decision Support : Language Guide and Reference

Precedence of operators
If not specified otherwise by means of parentheses, the prefix plus and minus are applied before multiply
and divide. Multiply and divide are applied before infix plus and minus. Operators of the same priority are
applied from left to right.

Conditions
The following diagram specifies the general form of expression that you can use wherever the syntax
specifies a condition. Notice that the diagram does not reflect all the rules that you must follow when you
use operators. You can find these rules in “Using operators” on page 79.

,

NOT

expression compare-operator expression

expression IS NULL

IS NOT NULL

(condition)

logical-operator
AND

OR

compare-operator
 =

 <>

 <

 >

 <=

 >=

expression compare-operator expression
Is a comparison, as described in “Comparisons” on page 81.

expression IS NULL ;expression IS NOT NULL
Is a test for null. See “Testing for null” on page 83.

(condition)
Specifies the value of condition.

AND, OR, NOT
Are logical operators defined in “Logical operations” on page 83.

Precedence of operators
If not specified otherwise by means of parentheses, NOT is applied before AND and OR. The operators
AND and OR are then applied from left to right.

Values and expressions

Chapter 9. Values and expressions 89

Values and expressions

90 IBM Z Decision Support : Language Guide and Reference

Chapter 10. Functions

This chapter describes a special form of expression called a function call. You can use a function call
directly in the statements whenever the syntax specifies an expression. You can also use it as a part of
more complex expressions.

A function call specifies a value as the result of applying a named operator, called a function, to one or
more arguments. It consists of a function name followed by a pair of parentheses enclosing the
specification of arguments. Most arguments are values specified by means of expressions. However, some
functions use arguments that are not values, for example, a section name or a labeled duration.

The result of a function is null if one of the arguments is null. The only exception to this rule is the VALUE
function (see “VALUE” on page 108).

This chapter describes, in alphabetical order, all functions available in the log collector language. It
describes the purpose, syntax, and result of each function. It also provides examples of how to use the
function.

CHAR
The CHAR function obtains a string representation of a date/time value.

Syntax
CHAR ( expression)

The argument must be a date, a time, or a timestamp.

Result
The result is a character string. It is the date/time string that represents the argument.

Example
Assume that:

• X_DATE has the value May 3, 2000.
• X_TIME has the value 5 hours, 17 minutes, and 34 seconds.
• X_TSTAMP has the value 5 hours, 17 minutes, and 34 seconds on May 3, 2000.

The function produces these results:

CHAR(X_DATE) = '2019-05-03'
CHAR(X_TIME) = '05.17.34.000000'
CHAR(X_TSTAMP) = '2019-05-03-05.17.34.000000'

DATE
The DATE function obtains a date from a value.

Syntax
DATE ( expression)

The argument must be a date, a timestamp, a number, or a date string.

Functions

© Copyright IBM Corp. 1994, 2017 91

Result
The result is a date.

• If the argument is a date, the result is that date.
• If the argument is a timestamp, the result is the date part of that timestamp.
• If the argument is a number, consider the integer part of that number as n. It must be in the range 1 to

3␠652␠059. The result of the function is the date of the day with sequential number n, counting from
January 1, 0001 as day 1.

• If the argument is a date string, the result is the date represented by that string.

Example
Assume that:

• X_DATE has the value April 22, 1993.
• X_TSTAMP has the value 15 hours, 2 minutes, and 1 second on March 6, 1993.
• X_STRING has the value '2019-03-06'.

The function produces these results:

DATE(X_DATE) = April 22, 1993
DATE(X_TSTAMP) = March 6, 1993
DATE(727159) = November 23, 1991
DATE('2019-06-15') = June 15, 2000
DATE(X_STRING) = March 6, 2000

DAY
The DAY function obtains the day part of a value.

Syntax
DAY ( expression)

The argument must be a date or a timestamp.

Result
The result is an integer between 1 and 31. It is the day part of the date or timestamp.

Example
Assume that:

• X_DATE has the value June 9, 2000.
• X_TSTAMP has the value 15 hours, 2 minutes, and 1 second on February 19, 2000.

The function produces these results:

DAY(X_DATE) = 9
DAY(X_TSTAMP) = 19

DAYS
The DAYS function obtains the day number corresponding to a date.

Functions

92 IBM Z Decision Support : Language Guide and Reference

Syntax
DAYS ( expression)

The argument must be a date, a timestamp, a date string, or a timestamp string.

Result
The result is an integer. It is the sequential number of the day represented by the argument, considering
January 1, 0001 as day 1.

• If the argument is a date or a date string, the result is the sequential number of the day represented by
the date.

• If the argument is a timestamp or a timestamp string, the result is the sequential number of the day
represented by the date part of the timestamp.

Example
Assume that:

• X_DATE has the value April 15, 1993.
• X_TSTAMP has the value 11 hours, 33 minutes, and 21 seconds on August 26, 1993.

The function produces these results:

DAYS(X_DATE) = 727668
DAYS(X_TSTAMP) = 727801
DAYS('2019-05-03') = 727686
DAYS('2019-05-03-15.45.01.000000') = 727686

Usage notes
You can use the DAYS function to obtain the day of week for a given date. To compute the day of week for
X_DATE, use this expression:

DAYS(X_DATE)-((DAYS(X_DATE)-1)/7)*7

The result is a number from 1 through 7, representing Monday through Sunday. If X_DATE has the value
April 15, 1993, the result is 4 which represents a Thursday.

You can use the DAYS function, with the DATE function, to obtain the date of Monday in the week
containing a given date. To compute the Monday date of the week containing X_DATE, use this expression:

DATE((DAYS(X_DATE)/7)*7 + 1)

(This expression assumes that weeks start on Monday). If X_DATE has the value April 15, 1993, then the
result is April 12, 1993, which is a Monday of the week that includes April 15, 1993.)

DAYTYPE
The DAYTYPE function obtains the day type of a given day.

Syntax
DAYTYPE ( expression)

The argument must be a date.

Functions

Chapter 10. Functions 93

The result of the function is defined by means of two tables, DRLSYS.DAY_OF_WEEK and
DRLSYS.SPECIAL_DAY. These tables are control tables and should be set up by your system administrator.
(For more information about control tables, refer to the Administration Guide).

The table DRLSYS.DAY_OF_WEEK defines an 8-character string, called a day type code, for each day of the
week. The table on your system might contain the information shown in Figure 68 on page 94. The
numbers 1 through 7 identify the days of week, Monday through Sunday. The table defines MON as the
day type for Monday, TUE as the day type for Tuesday, and so on.

 DAY OF DAY
 WEEK TYPE
 ------ --------
 1 MON
 2 TUE
 3 WED
 4 THU
 5 FRI
 6 SAT
 7 SUN

Figure 68. Example of DRLSYS.DAY_OF_WEEK table

The table DRLSYS.SPECIAL_DAY defines day type codes for certain dates. The table on your system might
contain the information shown in Figure 69 on page 94. It defines HOLIDAY as the day type for
December 25, 1993 and January 1, 1994.

 DAY
 DATE TYPE
 ---------- --------
 2019-12-25 HOLIDAY
 1994-01-01 HOLIDAY

Figure 69. Example of DRLSYS.SPECIAL_DAY table

Notice that day type codes can be different for different installations. The codes for days of week need not
be unique. For example, a particular installation might use WEEKDAY as the day type for Monday through
Friday, and WEEKEND for Saturday and Sunday.

Result
The result is an 8-character string. It is the day type code for the day represented by the argument.

Let date be the argument of DAYTYPE. Let w be a number representing the day of week for date, the
values 1 through 7 standing for Monday through Sunday. The result of DAYTYPE is specified by the
following expression.

 VALUE(LOOKUP DAY_TYPE IN DRLSYS.SPECIAL_DAY
 WHERE date = DATE,
 LOOKUP DAY_TYPE IN DRLSYS.DAY_OF_WEEK
 WHERE w = DAY_OF_WEEK)

A null result of this expression is considered an error. It means that day of week number w is missing from
DRLSYS.DAY_OF_WEEK.

Example
Assume that:

• DRLSYS.DAY_OF_WEEK contains the data shown in Figure 68 on page 94.
• DRLSYS.SPECIAL_DAY contains the data shown in Figure 69 on page 94.
• X_DATE has the value December 25, 1993.
• X_TSTAMP has the value 10 hours, 5 minutes, and 21 seconds on December 22, 1993.

The function produces these results:

Functions

94 IBM Z Decision Support : Language Guide and Reference

DAYTYPE(X_DATE) = 'HOLIDAY '
DAYTYPE(X_TSTAMP) = 'WED '

DIGITS
The DIGITS function obtains a character string representation of a number.

Syntax
DIGITS ( expression)

The argument must be an integer.

Result
The result is the string of digits (other than leading zeros) that represents the absolute value of the
argument.

Example
DIGITS(754) = '754'
DIGITS(00054) = '54'
DIGITS(-54) = '54'

FIELD
The FIELD function obtains the contents of a record field in a section specified by its occurrence number.

Syntax

FIELD ( field-name
.

, *

.

, expression)

The field-name must name a field in a repeated section. Each expression must specify an integer. These
integers are occurrence numbers of nested repeated sections that contain the field named field-name.

Result
The result is the value contained in field-name.

Example
Assume that you have the record shown in Figure 70 on page 96.

Functions

Chapter 10. Functions 95

REC_
TYPE

SUB_A SUB_B SUB_C

REC_
LEN

REC_
TSTAMP

SSEC_
OFF

SPGM_
OFF

SSEC_
LEN

SPGM_
LEN

SSEC_
OCC

SPGM_
OCC

SUB_A

SPGM_A SPGM_B SPGM_C

SUB_B SUB_C

First SUBSEC section

Second SUBSEC section

First SUBPGM

First SUBPGM

SPGM_
OFF

SPGM_
LEN

SP

SPGM_
OCC

&

&

SPGM_A SPGM_B SPGM_C SPGM_A

Figure 70. Example of a record containing nested sections.

To obtain the data in the field SUB_A in the first occurrence of SUBSEC, write:

FIELD(SUB_A,1)

To obtain the data in the field SPGM_A in the second occurrence of the SUBPGM section from the first
occurrence of the SUBSEC section, write:

FIELD(SPGM_A,1,2)

For more information about using the FIELD function, see “Accessing specific sections in a record” on
page 46.

FLOAT
The FLOAT function obtains a floating-point representation of a number.

Syntax
FLOAT ( expression)

The argument must be a number.

Result
If the argument is an integer, the result is a floating-point representation of that integer. If the argument is
a floating-point number, the result is that number.

Example
FLOAT(14) = 14.0
FLOAT(25.7) = 25.7

GETVAR

The GETVAR function is an internal function designed for the IMS CSQ Feature and obtains the IMS
system ID associated with a log data set.

Syntax

GETVAR ( expression)

Functions

96 IBM Z Decision Support : Language Guide and Reference

The only valid argument to the GETVAR function is 'IMSID'.

Result

An 8 character IMS system ID or '$UNKNOWN' is returned.

Example

Assume you have the following IMS system log data sets:

• DRLLOG1 with data for IMSA
• DRLLOG2 with data for IMSB
• DRLLOG3 with data for IMSC

When records from DRLLOG2 are being processed, the result is GETVAR('IMSID') = 'IMSB ' .

Usage Notes: If the IMS X'07' records are input from the DRLIMS07 DD name, the GETVAR('IMSID')
returns the value '$UNKNOWN'.

HOUR
The HOUR function obtains the hour part of a value.

Syntax
HOUR ( expression)

The argument must be a time or a timestamp.

Result
The result is an integer between 0 and 24. It is the hour part of the argument.

Example
Assume that:

• X_TIME has the value 14 hours, 20 minutes, 55 seconds.
• X_TSTAMP has the value 10 hours, 5 minutes, and 21 seconds on January 3, 1993.

The function produces these results:

HOUR(X_TIME) = 14
HOUR(X_TSTAMP) = 10

INTEGER
The INTEGER function obtains the integer part of a number.

Syntax
INTEGER ( expression)

The argument must be a number.

Functions

Chapter 10. Functions 97

Result
If the argument is an integer, the result is that integer. If the argument is a floating-point number, the
result is the integer part of that number.

Example
INTEGER(45) = 45
INTEGER(-75.3) = -75
INTEGER(0.0005) = 0

INTERVAL
The INTERVAL function obtains the length of a time interval in seconds.

Syntax
INTERVAL ( expression ,  expression)

Both arguments must be date/time values of the same type.

Result
The result is a floating-point number.

The result is the interval, in seconds, from the instant designated by the first argument to the instant
designated by the second argument.

If the first argument is later than the second, the result is negative.

The result has the maximum precision allowed by its floating-point representation. Therefore, results up
to 2283 years have a precision of 1 microsecond.

Example
Assume you have these variables:

• TME1 has the value of 6 hours, 20 minutes, 29 seconds, and 25000 microseconds.
• TME2 has the value of 18 hours, 25 minutes, 20 seconds.
• DAY1 has the value of March 5, 1993.
• DAY2 has the value of March 8, 1993.
• TS1 has the value of 5 hours on March 5, 1993.
• TS2 has the value of 10 hours, 30 minutes on March 11, 1993.

The function produces these results:

INTERVAL(TME1, TME2) = 43490.975
INTERVAL(TME2, TME1) = -43490.975
INTERVAL(DAY1, DAY2) = 259200.0
INTERVAL(TS1, TS2) = 538200.0

IPCONV
The IPCONV function converts a string that contains the hexadecimal representation of an IP address to
the corresponding presentation format.

Functions

98 IBM Z Decision Support : Language Guide and Reference

Syntax
IPCONV ( expression)

The argument must be the hexadecimal string that represents the IP address. The hexadecimal string can
only contain characters, in the range 0-9 and A-F. The string must be 32 characters long.

For IPV4 addresses, only the following format is supported:

00000000000000000000FFFFxxxxxxxx

Where xxxxxxxx are hexadecimal digits.

Result
The result is a character string that is the presentation format of the IP address. It can have the following
formats:
IPV4 address

d.d.d.d

Where d are decimal digits, from 0 to 255, with the leading zero omitted.

IPV6 address
x:x:x:x:x:x:x:x

Where x are groups of four hexadecimal digits, from 0000 to FFFF, with the leading zero omitted, but
at least one digit in each group.

Note: Other types of presentation formats, such as an IPV6 address with all zeros omitted (for
example, ::) or an IPV4 address mapped as an IPV6 address (for example, ::FFFd.d.d.d) are not
supported.

Example
Assume that:

• IPV4 is a string with the following address:

IPV4 = '00000000000000000000FFFC50B6B01'

• IPV6 is a string with the following address:

IPV6 = 'FE800000000000000011019900810106'

The function produces these results:

IPCONV(IPV4) = '197.11.107.1'
IPCONV(IPV6) = 'FE80:0:0:0:11:199:81:106'

LENGTH
The LENGTH function obtains the length of a character string.

Syntax
LENGTH ( expression)

The argument must be a character string.

Functions

Chapter 10. Functions 99

Result
The result is an integer. It is the length of the argument.

Example
Assume X_STRING has the value of 'LOG_NAME'. The function produces these results:

LENGTH(X_STRING) = 8
LENGTH('REC_LOG') = 7
LENGTH(' ') = 1
LENGTH('') = 0

MICROSECOND
The MICROSECOND function obtains the microseconds part of a value.

Syntax
MICROSECOND ( expression)

The argument must be a time or a timestamp.

Result
The result is an integer between 0 and 999␠999. It is the microseconds part of the argument.

Example
Assume that:

• X_TIME has the value 14 hours, 20 minutes, 55 seconds and 155 microseconds.
• X_TSTAMP has the value 8 hours, 30 minutes, and 45 seconds on March 25, 2016.

The function produces these results:

MICROSECOND(X_TIME) = 155
MICROSECOND(X_TSTAMP) = 0

MINUTE
The MINUTE function obtains the minute part of a value.

Syntax
MINUTE ( expression)

The argument must be a time or a timestamp.

Result
The result is an integer between 0 and 59. It is the minute part of the argument.

Example
Assume that:

• X_TIME has the value 17 hours, 16 minutes, 22 seconds and 100,000 microseconds.

Functions

100 IBM Z Decision Support : Language Guide and Reference

• X_TSTAMP has the value 8 hours, 58 minutes, and 19 seconds on April 1, 1993.

The function produces these results:

MINUTE(X_TIME) = 16
MINUTE(X_TSTAMP) = 58

MONTH
The MONTH function obtains the month part of a value.

Syntax
MONTH ( expression)

The argument must be a date or a timestamp.

Result
The result is an integer between 1 and 12. It is the month part of the argument.

Example
Assume that:

• X_DATE has the value July 22, 2000.
• X_TSTAMP has the value May 3, 2000.

The function produces these results:

MONTH(X_DATE) = 7
MONTH(X_TSTAMP) = 5

PERIOD
The PERIOD function obtains the name of the period containing a given time instant.

Syntax
PERIOD ( expression1 ,  expression2 ,  expression3)

expression1 must be a character string.

expression2 must be a date.

expression3 must be a time.

The result of the function is defined by means of table DRLSYS.PERIOD_PLAN. This table is a control table
and should be set up by your system administrator. (For more information about control tables, refer to
the Administration Guide .)

The table DRLSYS.PERIOD_PLAN defines one or more period plans. A period plan divides the day into
named intervals (such as shifts). These intervals are called periods. The table on your system might
contain the information shown in Figure 71 on page 102.

Functions

Chapter 10. Functions 101

 PERIOD DAY START END PERIOD
 PLAN ID TYPE TIME TIME NAME
 -------- -------- -------- -------- --------
 MVS2 MON 00.00.00 24.00.00 SPECIAL
 % MON 00.00.00 08.00.00 NIGHT
 % MON 08.00.00 17.00.00 PRIME
 % MON 17.00.00 24.00.00 NIGHT
 % TUE 00.00.00 08.00.00 NIGHT
 % TUE 08.00.00 17.00.00 PRIME
 % TUE 17.00.00 24.00.00 NIGHT
 % WED 00.00.00 08.00.00 NIGHT
 % WED 08.00.00 17.00.00 PRIME
 % WED 17.00.00 24.00.00 NIGHT
 % THU 00.00.00 08.00.00 NIGHT
 % THU 08.00.00 17.00.00 PRIME
 % THU 17.00.00 24.00.00 NIGHT
 % FRI 00.00.00 08.00.00 NIGHT
 % FRI 08.00.00 17.00.00 PRIME
 % FRI 17.00.00 24.00.00 NIGHT
 % SAT 00.00.00 24.00.00 WEEKEND
 % SUN 00.00.00 24.00.00 WEEKEND
 % HOLIDAY 00.00.00 24.00.00 HOLIDAY

Figure 71. Example of DRLSYS.PERIOD_PLAN table

Each row in the table describes one period of the period plan. A period plan is defined separately for each
day type that may be the result of the DAYTYPE function. That day type is identified in the DAY_TYPE
column.

There may be several period plans for the same day, each identified by its period plan ID, and each
defined by a group of rows in the table. The column PERIOD_PLAN_ID contains a pattern to be matched
by period plan ID. The periods specified for each day type and period plan must not overlap and must
cover the whole day from 00 hours to 24 hours.

As specified by the table in Figure 71 on page 102, the plan named MVS2 defines all of Monday to be one
period, named SPECIAL. According to any other plan, Monday is divided into three periods named NIGHT,
PRIME, and NIGHT, respectively.

Result
The result is an 8-character string.

Let the three arguments of PERIOD be called plan, date, and time, respectively. The result of PERIOD is
the name of the period of the plan plan that contains the time instant identified by date and time. It is
specified by this lookup expression:

 LOOKUP PERIOD_NAME IN DRLSYS.PERIOD_PLAN
 WHERE plan LIKE PERIOD_PLAN_ID
 AND DAYTYPE(date) = DAY_TYPE
 AND time >= START_TIME
 AND time < END_TIME

A null result of this lookup expression is regarded as an error.

The PERIOD function is defined using the DAYTYPE function. It is therefore indirectly defined also by the
tables DRLSYS.DAY_OF_WEEK and DRLSYS.SPECIAL_DAY that define DAYTYPE.

Functions

102 IBM Z Decision Support : Language Guide and Reference

Example
 DAY OF DAY
 WEEK TYPE
 ------ --------
 1 MON
 2 TUE
 3 WED
 4 THU
 5 FRI
 6 SAT
 7 SUN

Figure 72. DRLSYS.DAY_OF_WEEK table

Assume that DRLSYS.PERIOD_PLAN is as shown in Figure 71 on page 102, and that DAYTYPE is defined
by the tables shown in Figure 72 on page 103 and Figure 73 on page 103. Notice that June 7, 2014 is a
Monday.

 DAY
 DATE TYPE
 ---------- --------
 2019-12-25 HOLIDAY
 2014-01-01 HOLIDAY

Figure 73. DRLSYS.SPECIAL_DAY table

The function produces these results:

PERIOD('MVS1',DATE('2019-06-07'),TIME('06.24.19.240000')) = 'NIGHT '
PERIOD('MVS2',DATE('2019-06-07'),TIME('06.24.19.876050')) = 'SPECIAL '
PERIOD('MVS1',DATE('2019-06-07'),TIME('13.00.00.000000')) = 'PRIME '
PERIOD('MVS1',DATE('2019-12-25'),TIME('12.34.56.000000')) = 'HOLIDAY '

ROUND
The ROUND function rounds a date/time value down to a multiple of the specified number of time units.

Syntax
ROUND ( expression ,  labeled-duration)

The first argument must be a date, a time, or a timestamp. The second argument must be a labeled
duration.

• If the first argument is a date, the second argument must be a labeled duration of years, months, or
days.

• If the first argument is a time, the second argument must be a labeled duration of hours, minutes,
seconds, or microseconds.

• If the first argument is a timestamp, the second argument can be any labeled duration.

In each case, the labeled duration must specify a number of units greater than 0.

Result
The result is of the same type as the first argument. It is obtained from the first argument by this
procedure:

• Select the part that corresponds to the time unit used in the labeled duration. This means, if the labeled
duration is n YEARS, select the year part; if the labeled duration is n MONTHS, select the month part;
and so on.

• Round the selected part to a whole multiple of the second argument, in this sense:

Functions

Chapter 10. Functions 103

– If the part is an hour, minute, second, or microsecond (and thus has values starting with 0), round it
down to the nearest number k × n, where k ≥ 0 is a whole number, and n is the number of units in the
labeled duration.

– If the part is a month or a day (and thus has values starting with 1), round it down to the nearest
number 1 + k × n, where k ≥ 0 is a whole number, and n is the number of units in the labeled duration.

– If the part is a year, round it down to the closest number k × n, where k ≥ 0 is a whole number, and n
is the number of years in the labeled duration. If the result is 0, replace it by 1.

• Replace all lower-order parts by their lowest values (that is, 1 for month and day, or 0 for other parts).
• Leave the remaining parts unchanged.

Example
ROUND(DATE('2019-06-27'),1 MONTH) = June 1, 1993
ROUND(DATE('2019-06-27'),3 MONTHS) = April 1, 1993
ROUND(DATE('2019-06-27'),6 MONTHS) = January 1, 1993
ROUND(DATE('2019-06-27'),15 DAYS) = June 16, 1993
ROUND(DATE('2019-06-27'),50 DAYS) = June 1, 1993
ROUND(TIME('12.47.39.125000'),1 HOUR) = 12 hours
ROUND(TIME('12.47.39.125000'),60 MINUTES) = 12 hours
ROUND(TIME('12.47.39.125000'),30 MINUTES) = 12 hours, 30 minutes
ROUND(TIME('12.47.39.125000'),20 MINUTES) = 12 hours, 40 minutes
ROUND(TIME('12.47.39.125000'),5 SECONDS) = 12 hours, 47 minutes, 35 seconds

Usage notes
Notice that:

• Rounding a date to 3 months produces the first day of a quarter.
• Rounding a date to 6 months produces the first day of a half-year period.
• Rounding a date to 15 days produces the first day of a 15-day period within a month.
• Rounding to a large number of units is allowed, but it does not affect the higher-order parts. For

example, rounding a date to 50 days produces the same effect as rounding to 1 month.

SECOND
The SECOND function obtains the seconds part of a value.

Syntax
SECOND ( expression)

The argument must be a time or a timestamp.

Result
The result is an integer between 0 and 59. It is the seconds part of the argument.

Example
Assume that:

• X_TIME has the value 0 hours, 4 minutes, 25 seconds, and 1␠432 microseconds.
• X_TSTAMP has the value 17 hours, 25 minutes, 50 seconds, and 5 microseconds on June 20, 1993.

The function produces these results:

SECOND(X_TIME) = 25
SECOND(X_STAMP) = 50

Functions

104 IBM Z Decision Support : Language Guide and Reference

SECTNUM
The SECTNUM function obtains the sequential number of a section occurrence.

Syntax
SECTNUM ( section-name)

This function is intended for use with an internal record generated from a repeated section (see “Using
repeated sections within records” on page 36). The section-name must identify one of the sections
included in that record.

Result
The result is an integer. It is the sequential number (within the containing section) of the occurrence of
section-name that was used to build the record.

If section-name is not a repeated section, the result is 1 if the section is present in the record, or 0 if it is
absent.

For more information about using this function, see “Obtaining a section occurrence number” on page 46.

Example
Assume that you have a record shown in Figure 74 on page 105:

REC_
TYPE

SUB_A SUB_B SUB_C

REC_
LEN

REC_
TSTAMP

SSEC_
OFF

SPGM_
OFF

SSEC_
LEN

SPGM_
LEN

SSEC_
OCC

SPGM_
OCC

SUB_A

SPGM_A SPGM_B SPGM_C

SUB_B SUB_C

First SUBSEC section

Second SUBSEC section

First SUBPGM

First SUBPGM

SPGM_
OFF

SPGM_
LEN

SP

SPGM_
OCC

&

&

SPGM_A SPGM_B SPGM_C SPGM_A

Figure 74. Example of a record with nested sections

Assume that SECTNUM is evaluated while processing an internal record generated for the second
occurrence of SUBPGM in the first occurrence of SUBSEC.

The function produces these results:

SECTNUM(SUBSEC) = 1
SECTNUM(SUBPGM) = 2

SUBSTR
The SUBSTR function obtains a substring of a character string.

Syntax
SUBSTR ( expression ,  expression

,  expression

)

In this description, the three arguments are called, respectively, string, start, and length. The string must
be a character string. The start must be an integer in the range 1 to 254. The length must be an integer in
the range 0 to 255-start.

Functions

Chapter 10. Functions 105

Result
The result is a character string.

If length is specified, the result consists of length bytes of string, starting at the position start. The string is
regarded as extended on the right with the necessary number of blanks so that the specified substring
exists.

If length is not specified, the result consists of all bytes of string, starting at the position start and
extending up to the end of string. If start is greater than the length of string, the result is an empty string.

Both start and length are expressed in bytes. The SUBSTR function does not recognize double-byte
characters, and the result need not be a well-formed character string.

Example
The function produces these results:

SUBSTR('SUB_REC',3,2) = 'B_'
SUBSTR('SUB_REC',3) = 'B_REC'
SUBSTR('SUB_REC',3,10) = 'B_REC '

TIME
The TIME function obtains a time from a value.

Syntax
TIME ( expression)

The argument must be a time, a timestamp, or a time string.

Result
The result is a time.

• If the argument is a time, the result is that time.
• If the argument is a timestamp, the result is the time part of that timestamp.
• If the argument is a time string, the result is the time represented by that string.

Example
Assume that:

• X_TIME has the value 3 hours, 24 minutes, 20 seconds, and 2 microseconds.
• X_TSTAMP has the value 15 hours, 33 minutes, 25 seconds, and 75 microseconds on June 20, 1993.

The function produces these results:

TIME(X_TIME) = 3 hours, 24 minutes, 20 seconds, and 2 microseconds
TIME('17.24.13.000025') = 17 hours, 24 minutes, 13 seconds, and 25 microseconds
TIME(X_TSTAMP) = 15 hours, 33 minutes, 25 seconds, and 75 microseconds

TIMESTAMP
The TIMESTAMP function obtains a timestamp from a value or a pair of values.

Functions

106 IBM Z Decision Support : Language Guide and Reference

Syntax
TIMESTAMP ( expression1

,  expression2

)

Result
The result of the function depends on whether expression 1 or expression2 is specified, or both.

If only one argument is specified
expression 1 must be a timestamp or a timestamp string. The result is a timestamp:

• If expression 1 is a timestamp, the result is that timestamp.
• If expression 1 is a timestamp string, the result is the timestamp represented by that string.

If both arguments are specified
expression 1 must be a date or a date string. expression2 must be a time or a time string.

The result is a timestamp. It consists of the date and time specified by the arguments.

Example
Assume that:

• X_TIME has the value 3 hours, 24 minutes, 20 seconds, and 2 microseconds.
• X_DATE has the value February 11, 1993.
• X_TSTAMP has the value 15 hours, 33 minutes, 25 seconds, and 75 microseconds on June 20, 1993.

The function produces these results:

TIMESTAMP(X_TSTAMP) = 15 hours, 33 minutes, 25 seconds, and 75 microseconds on June 20, 1993
TIMESTAMP('2019-04-17-19.01.25.000000') = 19 hours, 1 minute, 25 seconds on April 17, 1993
TIMESTAMP(X_DATE, X_TIME) = 3 hours, 24 minutes, 20 seconds, and 2 microseconds on February 11, 1993

TRANSLATE
The TRANSLATE function translates a character string to another representation.

Syntax
TRANSLATE ( string

codes

)

codes
, , from-codes

, pad-byte

to-codes

, , pad-byte

from-codes

, pad-byte

In this description, the arguments are called, respectively, string, to-codes, from-codes, and pad-byte. All
arguments must be character strings. The pad-byte must be a string of length 1.

Functions

Chapter 10. Functions 107

Result
The result is a character string. It is a copy of string in which some of the bytes have been replaced by
others (string itself is not altered).

• If from-codes is present, each byte of string is looked up in from-codes. If it is found on position n of
from-codes, it is replaced by the byte appearing on position n of to-codes; otherwise it is left unchanged.

If to-codes is shorter than n or omitted, it is conceptually extended on the right with as many copies of
the pad-byte as needed. If pad-byte is omitted, a blank is used instead.

• If from-codes is absent and to-codes is present, each byte of string is replaced by the byte appearing on
position n = b + 1 of to-codes, where b is the binary value of the byte.

If to-codes is shorter than n, it is conceptually extended on the right with as many copies of the pad-byte
as needed. If pad-byte is omitted, a blank is used instead.

• If both from-codes and to-codes are omitted, string is translated to uppercase: all occurrences of
lowercase letters (a-z) are replaced by their uppercase counterparts (A-Z).

The TRANSLATE function does not recognize double-byte characters, and the result need not be a well-
formed character string.

Example
TRANSLATE('abcdef') = 'ABCDEF'
TRANSLATE('abcdef', '*#$', 'bde') = 'a*c#$f'
TRANSLATE('abcdef', 'CD', 'acde', '.') = 'CbD..f'

VALUE
The VALUE function returns the first argument that is not null.

Syntax
VALUE ( expression ,  expression)

All arguments must have the same data type.

Result
The result has the same data type as the arguments. It is equal to the first argument that is not null. If all
arguments are null, the result is null.

Example
Assume that:

• EXPA has the value of 25.
• EXPB has the value of 50.
• EXPC has a null value.

The function produces these results:

VALUE(EXPA, EXPB, EXPC) = 25
VALUE(EXPC, EXPB, EXPA) = 50
VALUE(EXPB, EXPA) = 50

WORD
The WORD function extracts a word from a character string.

Functions

108 IBM Z Decision Support : Language Guide and Reference

Syntax
WORD ( expression ,  expression

,  expression

)

In this description, the three arguments are called, respectively, string, n, and delimiters. The first and
third arguments must be character strings. The second argument must be an integer.

Result
The result is a character string. If n is positive, the result is the nth word of string. If n is negative, the
result is the nth word of string, counting from the end. If n is 0, or if the string contains fewer than n
words, the result is an empty string.

The function treats string as a sequence of words separated by delimiters. A delimiter is any byte present
in delimiters, or a blank if the delimiters argument is absent or empty. A word is any substring not
containing delimiters, preceded by a delimiter (or start of string), and followed by a delimiter (or end of
string).

If a blank is specified as a delimiter, a whole sequence of adjacent blanks is counted as one delimiter.

The WORD function recognizes double-byte characters. Since a delimiter is a one-byte character, it is
recognized only within a single-byte sequence.

Example
WORD('A B',2,' ') = 'B'
WORD('A,,,B',2,',') = '
WORD('A,,,B',-1,',') = 'B'

YEAR
The YEAR function obtains the year part of a value.

Syntax
YEAR ( expression)

The argument must be a date or a timestamp.

Result
The result is an integer between 1 and 9␠999. It is the year part of the argument.

Example
Assume that:

• X_DATE has the value February 11, 2014.
• X_TSTAMP has the value 15 hours, 33 minutes, 25 seconds, and 75 microseconds on June 20, 2014.

The function produces these results:

YEAR(X_DATE) = 2014
YEAR(X_TSTAMP) = 2014

Functions

Chapter 10. Functions 109

Functions

110 IBM Z Decision Support : Language Guide and Reference

Chapter 11. Log collector language statements

The log collector language consists of statements that you use to determine how data is collected,
processed, and stored. It also provides statements that you can use to maintain data tables and to
perform the collection process.

This chapter provides an alphabetical listing of the language statements. For each statement, the chapter
describes:

• The purpose of the statement
• The syntax used for the statement
• Parameters (clauses and keywords) that are part of the statement
• Examples of how to use the statement
• Usage notes, if needed, that explain issues to consider when using the statement.

ALTER LOG
Use the ALTER LOG statement to modify a stored log definition. You can add, change, or delete a:

• Header
• Timestamp expression
• First record or last record condition
• Log procedure name and the parameters passed to the log procedure

This description assumes that you are familiar with log definitions and the DEFINE LOG statement. So, it
explains only how ALTER LOG modifies the log definition. It does not explain what the modification
means. The syntax diagram shows all the clauses that you can specify, but they are explained only as
much as it is needed to tell what is altered. See “DEFINE LOG” on page 125 for more information.

Syntax
ALTER LOG log-name

HEADER (

,

field)

NONE

TIMESTAMP expression

NONE

FIRST RECORD condition

NONE

LAST RECORD condition

NONE

LOGPROC procedure-name procedure-parms

NONE

procedure-parms

Log collector language statements

© Copyright IBM Corp. 1994, 2017 111

LANGUAGE

ASM

ASML

C

PARM expression

NONE

field
field-name

* OFFSET integer-constant

LENGTH integer-constant

* field-format

Parameters
log-name

Identifies the log definition that you want to alter.
HEADER (field, ...)

Adds or replaces the header definition. The header fields are specified in the same way as in the
DEFINE LOG statement. If a header is already defined for the log, the entire header definition is
replaced.

HEADER NONE
Deletes all header fields.

TIMESTAMP expression
Adds or replaces the timestamp expression.

TIMESTAMP NONE
Deletes the timestamp expression.

FIRST RECORD condition
Adds or replaces the first record condition.

FIRST RECORD NONE
Deletes the first record condition.

LAST RECORD condition
Adds or replaces the last record condition.

LAST RECORD NONE
Deletes the last record condition.

LOGPROC procedure-name procedure-parms
Adds or modifies the LOGPROC clause.

If no log procedure is defined for the log, a log procedure definition is added. You use then procedure-
name and procedure-parms in the same way as in the DEFINE LOG statement.

If a log procedure is already defined for the log, you use procedure-name and procedure-parms to
alter the existing log procedure definition:
procedure-name

Replaces the log procedure name. If you do not want to alter the name, you must code here the
same name as already defined.

LANGUAGE
Alters the language specification. An omitted LANGUAGE means no change (not LANGUAGE ASM).

PARM expression
Adds or replaces the parameter expression.

PARM NONE
Deletes the parameter expression.

Log collector language statements

112 IBM Z Decision Support : Language Guide and Reference

LOGPROC NONE
Deletes the log procedure definition.

Examples
Assume you want to add F_FIELD=1 as the first record condition for a log called SOME_LOG. Use this
ALTER LOG statement to add the condition:

ALTER LOG SOME_LOG FIRST RECORD F_FIELD=1;

Figure 75. ALTER LOG statement

Usage
When you use the ALTER LOG statement, you specify only a part of the log definition. You cannot see the
complete definition. This makes the change difficult if the definition is complex. It may be more
convenient to delete the entire definition using a DROP statement and then store a modified definition
using a DEFINE LOG statement.

ALTER RECORD
Use the ALTER RECORD statement to modify a stored record definition. You can add, change, or delete:

• Fields
• Sections
• Condition that identifies the record
• Name of the record procedure that builds the records

This description assumes that you are familiar with record definitions and the DEFINE RECORD
statement. Therefore, it explains only how ALTER RECORD modifies the record definition. It does not
explain what the modification means. The syntax diagram shows all the clauses that you can specify, but
they are explained only as much as it is needed to tell what is altered. See “DEFINE RECORD” on page
129 for more information.

Syntax
ALTER RECORD record-name

IN LOG log-name

BUILT BY procedure-name

NONE

IDENTIFIED BY condition

NONE

ADD FIELDS (

,

field)

IN SECTION section-name

DELETE FIELD field-name

ADD SECTION section

DELETE SECTION section-name

SECTION section-name section-attributes

section

Log collector language statements

Chapter 11. Log collector language statements 113

section-name

IN SECTION section-name PRESENT IF condition

OFFSET expression LENGTH expression

NUMBER expression

*

REPEATED

FIELDS (

,

field)

section-attributes

IN SECTION section-name

NONE

PRESENT IF condition

NONE

OFFSET expression

NONE

LENGTH expression

NONE

NUMBER expression

*

NONE

REPEATED

NONREPEATED

field
field-name

* OFFSET integer-constant

LENGTH integer-constant

*

field-format

Parameters
record-name

Identifies the record definition that you want to alter.
IN LOG log-name

Replaces the IN LOG clause.
BUILT BY procedure-name

Adds or replaces the BUILT BY clause.
BUILT BY NONE

Deletes the BUILT BY clause.
IDENTIFIED BY condition

Adds or replaces the IDENTIFIED BY condition.
IDENTIFIED BY NONE

Deletes the IDENTIFIED BY condition.

Log collector language statements

114 IBM Z Decision Support : Language Guide and Reference

ADD FIELDS (field, ...)
Adds or replaces one or more fields. The fields are specified in the same way as in the DEFINE
RECORD statement.
IN SECTION section-name

Specifies the section where to add the fields. An omitted IN SECTION means that you want to add
fields in the record.

DELETE FIELD field-name
Deletes the field field-name.

ADD SECTION section
Adds a section. The section is specified in the same way as in the DEFINE RECORD statement.

DELETE SECTION section-name
Deletes the specified section.

SECTION section-name
Modifies the attributes of section section-name.
IN SECTION section-name

Adds or replaces the IN SECTION attribute.
IN SECTION NONE

Deletes the IN SECTION attribute.
PRESENT IF condition

Adds or replaces the PRESENT IF condition.
PRESENT IF NONE

Deletes the PRESENT IF condition.
OFFSET expression

Adds or replaces the OFFSET attribute.
OFFSET NONE

Deletes the OFFSET attribute.
LENGTH expression

Adds or replaces the LENGTH attribute.
LENGTH NONE

Deletes the LENGTH attribute.
NUMBER expression ;NUMBER *

Adds or replaces the NUMBER attribute.
NUMBER NONE

Deletes the NUMBER attribute.
REPEATED

Specifies the section to be repeated.
NONREPEATED

Specifies the section to be non-repeated.

Examples
Assume that you want to add a 10-byte character field at offset 52 in a section called SUB_SECT. Use the
following ALTER RECORD statement to add the field.

ALTER RECORD SOME_REC
 ADD FIELDS (NEW_FIELD OFFSET 52 CHAR(10)) IN SECTION SUB_SECT;

Figure 76. ALTER RECORD statement

For more examples of how to use the ALTER RECORD statement, see “Using the ALTER RECORD
statement” on page 22.

Log collector language statements

Chapter 11. Log collector language statements 115

Usage
When you use the ALTER RECORD statement, you specify only a part of the record definition. You cannot
see the complete definition. This makes the change difficult if the definition is complex. It may be more
convenient to delete the entire definition using a DROP statement and then store a modified definition
using a DEFINE RECORD statement.

ALTER RECORDPROC
Use the ALTER RECORDPROC statement to modify a stored record procedure definition. You can change
the:

• Record types for which the record procedure applies
• Language in which the record procedure is written
• Parameters that are passed to the record procedure

This description assumes that you are familiar with record procedures and the DEFINE RECORDPROC
statement. So, it explains only how ALTER RECORDPROC modifies the definition of a record procedure. It
does not explain what the modification means. See “DEFINE RECORDPROC” on page 136 for more
information.

Syntax

ALTER RECORDPROC procedure-name FOR

,

record-name

LANGUAGE ASM

ASML

C

PARM expression

NONE

Parameters
procedure-name

Identifies the record procedure definition that you want to alter.
FOR record-name , ...

Replaces the list of records processed by the procedure.
LANGUAGE

Replaces the language specification of the procedure.
PARM expression

Adds or replaces the parameter expression.
PARM NONE

Deletes the parameter expression.

Examples
Assume that you want to change the record procedure definition DRL2CIC1 so the log collector will invoke
the exit with the C language interface. Use this ALTER RECORDPROC statement to change the language
interface:

ALTER RECORDPROC DRL2CIC1 LANGUAGE C;

Figure 77. ALTER RECORDPROC statement

Log collector language statements

116 IBM Z Decision Support : Language Guide and Reference

Usage
When you use the ALTER RECORDPROC statement, you specify only a part of the record procedure
definition. You cannot see the complete definition. This makes the change difficult if the definition is
complex. It may be more convenient to delete the entire definition using a DROP statement and then
store a modified definition using a DEFINE RECORDPROC statement.

ALTER UPDATE
Use the ALTER UPDATE statement to modify a stored update definition. You can add, change, or delete:

• The SECTION clause
• The WHERE clause
• Parts of the LET, GROUP BY, or SET clauses
• The APPLY SCHEDULE, DISTRIBUTE, or MERGE clauses

This description assumes that you are familiar with update definitions and the DEFINE UPDATE
statement. So, it explains only how ALTER UPDATE modifies the update definition. It does not explain
what the modification means. The syntax diagram shows all the clauses that you can specify, but they are
explained only as much as it is needed to tell what is altered. See “DEFINE RECORDPROC” on page 136
for more information.

Syntax
ALTER UPDATE update-name SECTION section-name

NONE

WHERE condition

NONE

apply-schedule-clause

APPLY SCHEDULE NONE

distribute-clause

DISTRIBUTE NONE

LET  identifier = expression

NONE

GROUP BY  column-name = expression

NONE

SET  column-name = accumulation

NONE

merge-clause

MERGE NONE

accumulation

Log collector language statements

Chapter 11. Log collector language statements 117

SUM ( expression)

MIN ( expression)

MAX ( expression)

COUNT ( expression)

FIRST ( expression)

LAST ( expression)

AVG ( expression ,  column-name)

PERCENTILE ( expression ,  column-name ,  integer-constant)

apply-schedule-clause
APPLY SCHEDULE expression TO  column-name ,  column-name ,  column-name

STATUS identifier

distribute-clause

DISTRIBUTE

,

field-name

column-name

BY expression START expression

END expression TIMESTAMP identifier INTERVAL identifier

merge-clause
MERGE (column-name =  expression , column-name =  expression ,

column-name =  expression , column-name =  expression)

Parameters
update-name

Identifies the update definition that you want to alter.
SECTION section-name

Adds or replaces the SECTION clause.
SECTION NONE

Deletes the SECTION clause.
WHERE condition

Adds or replaces the WHERE condition.
WHERE NONE

Deletes the WHERE condition.
apply-schedule-clause

Adds or replaces the APPLY SCHEDULE clause. The clause is specified as in the DEFINE UPDATE
statement.

APPLY SCHEDULE NONE
Deletes the APPLY SCHEDULE clause.

distribute-clause
Adds or replaces the DISTRIBUTE clause. The clause is specified as in the DEFINE UPDATE
statement.

DISTRIBUTE NONE
Deletes the DISTRIBUTE clause.

Log collector language statements

118 IBM Z Decision Support : Language Guide and Reference

LET identifier = expression
Adds or replaces the specification of identifier in the LET clause.

LET identifier = NONE
Deletes the specification of identifier from the LET clause.

GROUP BY column-name = expression
Adds or replaces the specification of column column-name in the GROUP BY clause.

GROUP BY column-name = NONE
Deletes the specification of column column-name from the GROUP BY clause.

SET column-name = accumulation
Adds or replaces the specification of column column-name in the SET clause.

SET column-name = NONE
Deletes the specification of column column-name from the SET clause.

merge-clause
Adds or replaces the MERGE clause. The clause is specified as in the DEFINE UPDATE statement.

MERGE NONE
Deletes the MERGE clause.

Examples
The update definition UPD_WKLD applies to records of type WKLD_REC, which contain a field WRKFLD.
Assume that you want to change UPD_WKLD so that it will only apply to WKLD_REC records when
WRKFLD is not equal to 120. Use this ALTER UPDATE statement to change the condition to which
UPD_WKLD applies:

ALTER UPDATE UPD_WKLD
 WHERE WRKFLD <> 120;

Figure 78. ALTER UPDATE statement

For more information about using the ALTER UPDATE statement, see “Changing and deleting update
definitions” on page 58.

Usage
When you use the ALTER UPDATE statement, you specify only a part of the update definition. You cannot
see the complete definition. This makes the change difficult if the definition is complex. It may be more
convenient to delete the entire definition using a DROP statement and then store a modified definition
using a DEFINE UPDATE statement.

COLLECT
Use the COLLECT statement to collect log data. The processing is controlled by the stored definitions of
the log, records, and updates.

Log collector language statements

Chapter 11. Log collector language statements 119

Syntax

COLLECT log-name
FROM DRLLOG

FROM file-name

CONTINUOUSLY FROM log-stream-1

DISTRIBUTE TO log-stream-2 WHERE condition

INCLUDE

,

table-name

LIKE string-constant

EXCLUDE

,

table-name

LIKE string-constant

REPROCESS

ON TIMESTAMP OVERLAP SKIP

STOP

PARTITION

DIRECT SCAN

COMMIT AFTER

BUFFER FULL

END OF FILE

integer-constant RECORDS

integer-constant MINUTES

integer-constant SECONDS

BUFFER FULL ONLY

FULL STATISTICS AFTER integer COMMITS

BUFFER SIZE integer-constant

M

K

ON OVERFLOW

BREAK

CONTINUE

.

Log collector language statements

120 IBM Z Decision Support : Language Guide and Reference

Parameters
log-name

Is the name of a stored log definition. It identifies the type of log to be collected.
FROM file-name

Names the DD statement that specifies the log data set to be collected. If neither the FROM nor
CONTINUOUSLY FROM parameter is specified, the default is FROM DRLLOG.

CONTINUOUSLY FROM log-stream-1
Identifies the name of the log stream to be collected. CONTINUOUSLY means the execution will
continue until terminated with a STOP command from the console. If the log stream becomes empty,
the log collector will continue to wait for new log stream records.

DISTRIBUTE TO log-stream-2
Identifies the log stream name where the collected data will be written. When the log collector
commits the collected data to the Db2 tables, if a DISTRIBUTE clause was specified, the data
committed to Db2 is also written to log-stream-2. This data can then be transmitted to other systems
using the Data Mover. Data is distributed for all the levels in each hierarchy of tables.

WHERE condition
Limits processing to those records for which the condition is true. Any identifiers used in the condition
must be names of log header fields. If there is a log procedure, the condition applies to the records
produced by the log procedure. Otherwise, the condition is applied to the records from the log. The
condition is not applied to the records produced by record procedures.

INCLUDE
Limits collect to update only the specified tables. If you specify INCLUDE, the log collector does not
update any other tables associated with this log definition.
table-name

Is the name of a table to be included.
LIKE string-constant

Specifies a group of tables to be included. The tables are those with names matching the pattern
specified as the string-constant. The pattern matching rules are defined in “Pattern matching” on
page 82. If the pattern contains a period (.), the table prefix must match the part before the
period, and the rest of the table name must match the part after the period. For example, the
pattern DRL.CICS% includes all tables whose names start with CICS and have DRL as the prefix.

If the pattern does not contain a period, the prefix must be the current user ID, and the rest of the
name must match the whole pattern.

EXCLUDE
Prevents collect from updating the specified tables. If you specify EXCLUDE, the log collector updates
all other tables associated with this log definition.
table-name

Is the name of a table to be included.
LIKE string-constant

Specifies a group of tables to be excluded, using the same rules as for INCLUDE.
REPROCESS

Instructs the log collector to collect data from the log data set in its entirety even if that data set has
already been partially or completely processed.

ON TIMESTAMP OVERLAP SKIP
Instructs the log collector to collect data from a log with a matching DATASET_NAME entry in the
DRLLOGDATASETS system table, skipping records included in the range indicated by the
FIRST_TIMESTAMP and LAST_TIMESTAMP entries in DRLLOGDATASETS. This option can only be
specified if a TIMESTAMP expression was specified in the definition for the log being collected.

Log collector language statements

Chapter 11. Log collector language statements 121

Consider using this option if the log management procedures at your site allow for the possibility of
logs with duplicate data set names being created with later logs supplementing or replacing the data
from earlier logs, and you want the data in the later logs to be processed automatically.

For example, suppose log SMF.DAILY.D001 is created, but is incomplete, and only contains data from
8:00am to 11:00am. After the data has been collected by IBM Z Decision Support, SMF.DAILY.D001 is
re-created containing a full day's data.

If you collect this re-created log without specifying ON TIMESTAMP OVERLAP SKIP then the collect
will succeed because the logs do not have matching first records, but data will be duplicated for the
period that the logs overlap. If you specify ON TIMESTAMP OVERLAP SKIP when you collect the re-
created log then the collect will succeed, but the log records from 8:00 am and 11:00 am will not be
reprocessed.

If both REPROCESS and ON TIMESTAMP OVERLAP SKIP are specified then the log will be processed
as if only REPROCESS had been specified.

ON TIMESTAMP OVERLAP STOP
Instructs the log collector to stop processing a log if the first record identified has a timestamp that is
earlier than the LAST_TIMESTAMP entry in the DRLLOGDATASETS system table for a previously
collected log with the same data set name.

Consider using this option if the log management procedures at your site allow for the possibility of
logs with duplicate data set names being created that will not contain matching first records, and you
want this to be treated as an error condition.

Note:

1. When ON TIMESTAMP OVERLAP SKIP is specified the log collector simply skips the records for any
time period that overlaps a previously collected log with the same data set name. The results of
this process may not always match exactly the results obtained when the same overall set of
records is collected in a single pass.

2. ON TIMESTAMP OVERLAP SKIP cannot be used in conjunction with collection methods that use
REPROCESS with INCLUDE/EXCLUDE to process the same log data set in multiple passes. If ON
TIMESTAMP OVERLAP SKIP is used in this situation then skip processing will be performed
successfully for the first recollect of the log, but if that collect is successful then all subsequent
collects will skip over the entire log.

3. ON TIMESTAMP OVERLAP SKIP is mutually exclusive with REPROCESS. The REPROCESS option is
intended for reprocessing a previously processed set of data. ON TIMESTAMP OVERLAP is
intended for processing (recreated) data that overlaps previously processed data.

PARTITION
Specifies when COLLECT must collect on the PARTITIONING feature only. It allows jobs which fill in
different partitions of the same tables to run in parallel to improve COLLECT performance. Do not use
this parameter in COLLECT jobs that fill in NON-PARTITIONED tables.

Specifying the PARTITION parameter also instructs the log collector to use the DIRECT algorithm for
database updates. If you set both the PARTITION and SCAN parameters, the SCAN parameter is
overridden and the DIRECT algorithm is used.

DIRECT or SCAN
Instructs the log collector to use either the DIRECT or the SCAN algorithm to update the Db2
database. This means that the log collector does not run a query to select the algorithm to be used,
and performance is therefore improved.

To decide which parameter to specify, refer to message DRL0356I in the output log of previous
collects that were run without specifying either DIRECT or SCAN.

If you set both the SCAN and PARTITION parameters, the SCAN parameter is overridden and the
DIRECT algorithm is used.

If you do not specify DIRECT (or PARTITION) or SCAN then the log collector will run a query to select
which algorithm to use. In this case if the rows in the collect buffer do not match with any rows in the
database for a table, an insert algorithm is used.

Log collector language statements

122 IBM Z Decision Support : Language Guide and Reference

COMMIT AFTER
Specifies when the log collector should execute COMMIT to make the database updates permanent.
(The log collector always writes its internal buffer to the Db2 database before issuing COMMIT, but it
may write the buffer to the database without committing the updates.)

If a collect abends after a commit, at least part of the data set has been successfully processed. The
log collector can automatically resume collecting data from the log at the point where the log collector
made the commit.

The possible options follow.
BUFFER FULL

Commit in each of these situations:

• After the internal buffer was filled and written to the database
• At the end of each concatenated log data set
• After the entire input was processed

END OF FILE
Commit only after the entire input has been processed.

integer-constant RECORDS
Commit only after processing the number of records specified by the integer-constant. This option
results in the longest execution time, compared with other COMMIT AFTER options.

integer-constant MINUTES
Commit after processing for integer-constant minutes. This option is only valid when
CONTINUOUSLY is specified.
Valid values are 1, 2, 5, 10, 15, 20, 30 or 60 MINUTES

integer-constant SECONDS
Commit after processing for integer-constant seconds. This option is only valid when
CONTINUOUSLY is specified.
Valid values are 15, 30 or 60 SECONDS

BUFFER FULL ONLY
Commit in each of these situations:

• After the internal buffer was filled and written to the database
• After the entire input was processed

This option will normally result in a shorter execution time when processing concatenated log data
sets. This option is not recommended when IBM Z Decision Support collect is required to collect
IMS logs which have been completely or partly processed.

FULL STATISTICS AFTER integer COMMITS
This syntax is only valid for the Continuous Collector.
It is used to determine how often the full set of collect statistics is written to the DRLOUT data set. If
this clause is specified, a heart beat message DRL0384I is issued each time a data base commit
occurs, and the full statistics report s written every integer commits.

COMMIT AFTER END OF FILE is not accepted with FULL STATISTICS AFTER.

BUFFER SIZE integer-constant
Specifies the size (in bytes) of the internal collect buffer. The default is 10M bytes. The minimum
allowed value is 10K bytes. The maximum size of the internal collect buffer is limited to the virtual
storage available when the log collector executes. If you specify a BUFFER SIZE that exceeds the
available virtual storage, the log collector abends.

Note: The log collector sometimes requires more buffer space than you specify. It abends if it cannot
obtain the extra space.

Log collector language statements

Chapter 11. Log collector language statements 123

ON OVERFLOW
Specifies the action to be taken in case of an overflow. An overflow is a situation when a numeric value
accumulated in a table column becomes too large for that column. The possible options follow.
BREAK

Stop data collection. Do not update the database.
CONTINUE

Reset the column to 0, write the lost value to the DRLDUMP file, and continue data collection.

Examples
Assume that you want to update only two tables, NETWORK_SESSIONS and DB2_ACCOUNTING, with
data for the MVS1 system from an SMF log data set named by the SMFLOG DD statement. You also want
to write the internal buffer to the database and commit the change after every 5␠000 records in the log
data set have been processed.

 COLLECT SMF
 FROM SMFLOG
 WHERE SMFSID = 'MVS1'
 INCLUDE NETWORK_SESSIONS, DB2_ACCOUNTING
 COMMIT AFTER 5000 RECORDS;

Figure 79. COLLECT statement

For more information about using the COLLECT statement, see Chapter 6, “Collecting log data,” on page
61.

Usage
You can specify both INCLUDE and EXCLUDE on a COLLECT statement. For example, INCLUDE LIKE
'DRL.CICS%' EXCLUDE DRL.CICS_APPL_H includes all CICS tables except DRL.CICS_APPL_H.

COMMENT ON
Use the COMMENT ON statement to add or replace comments in stored definitions. You can add or
replace comments for:

• Log definitions
• Record definitions
• Record procedure definitions
• Update definitions

Syntax
COMMENT ON LOG log-name

RECORD record-name

FIELD record-name.field-name

RECORDPROC procedure-name

UPDATE update-name

IS string-constant

Parameters
LOG log-name

Specifies that the comment applies to the log definition log-name.
RECORD record-name

Specifies that the comment applies to the record definition record-name.

Log collector language statements

124 IBM Z Decision Support : Language Guide and Reference

FIELD record-name.field-name
Specifies that the comment applies to the field field-name in the record definition record-name.

RECORDPROC procedure-name
Specifies that the comment applies to the record procedure definition procedure-name.

UPDATE update-name
Specifies that the comment applies to the update definition update-name.

IS string-constant
Specifies the comment text, which can be any character string up to 254 characters long.

Examples
Assume you want to add a comment to the field WRKLD in the record type HOUR_REC. Use this
COMMENT ON statement to add the comment:

COMMENT ON FIELD HOUR_REC.WRKLD
 IS 'New definition for the WRKLD field';

Figure 80. COMMENT ON statement

Usage
• The comments stored using the COMMENT ON statement can be viewed using the administration

dialog. (See the Administration Guide and Reference.)
• To store comments for the Db2 tables and their columns, use the COMMENT ON statement that is part

of SQL.
• Notice that the double minus sign (--) comments and the slash asterisk (/*) asterisk slash (*/)

comments are not stored with your definitions.

DEFINE LOG
Use the DEFINE LOG statement to define a log type.

Syntax
DEFINE LOG log-name

VERSION string-constant

HEADER (

,

field)

TIMESTAMP expression

FIRST RECORD condition LAST RECORD condition

LOGPROC procedure-name procedure-parms

procedure-parms

LANGUAGE

ASM

ASML

C

PARM expression

field

Log collector language statements

Chapter 11. Log collector language statements 125

field-name

* OFFSET integer-constant

LENGTH integer-constant

*

field-format

Parameters
log-name

The name of the log type being defined. It must be an identifier, at most 16 bytes long. All log types
defined to the log collector must have distinct names.

VERSION string-constant
The string specified by the string-constant is stored together with the definition, to identify the
statement that was used to create the definition. The string can be at most 18 bytes long. Omitted
VERSION means the same as specifying VERSION '.

If the stored definition is later altered by means of an ALTER LOG statement, its version identification
is changed to 'ALTERED'.

Version names are used by the IBM Z Decision Support installation program to decide which
definitions should be replaced. All definitions supplied by IBM have version names starting with 'IBM'.
To ensure correct installation of new releases, do not use such names for your own definitions. See
Figure 81 on page 128 for an example of how VERSION is used by IBM. Refer to the Administration
Guide and Reference for information on how to use VERSION.

HEADER (field, ...)
Defines the fields that are common to all records. There is a limit of 2␠000 fields in a header
definition.
field

Defines one field.

This general rule applies to all fields.

The LENGTH and OFFSET (explicit or default) define a field as an area so many bytes long, starting
at a specific place in the record. If the record is too short to contain ALL bytes of a field, the field is
considered absent and a reference to it produces null value.

The above rule has one exception: LENGTH *. The asterisk length means that the field extends up
to the end of the record. The field is absent if the record is too short to contain the first byte of the
field.
field-name

The name of the field. It can be any identifier. Field names must be unique within a header.
OFFSET integer-constant

Defines the offset of the field in the record. Notice that offsets in varying-length records
(record format V, VB, or VBS) include the 4-byte record descriptor word.

If you omit OFFSET, the field starts at the end of the field defined just before it. The preceding
field cannot have an asterisk length. If you omit the offset for the first field in the list, that field
begins at offset 0.

LENGTH integer-constant
Defines the length of the field in bytes. The allowed lengths depend on the format of the field.
See Table 37 on page 132; the Length column states the possible length(s) of the field.

If you omit LENGTH, the log collector uses the default length depending on the field format. If
the Length column in Table 37 on page 132 specifies a single value, this is the default.
Otherwise the default is stated in the column.

Log collector language statements

126 IBM Z Decision Support : Language Guide and Reference

LENGTH *
Indicates that the field extends up to the end of the record.

field-format

Specifies the format of the data contained in the field. The possible values of field-format are
listed in Table 37 on page 132, in the Field format column. The Data type column states the
data type to which the log collector automatically converts the content of the field when it
uses that field.

If you omit the field format, the field format is HEX.

TIMESTAMP expression
Describes how the timestamp of the records is derived from the fields in the header. The log collector
prints the timestamp of the first and last processed records in the log data set (and saves these
timestamps in a system table) to identify which time period the log covers.

The result of expressionmust be a timestamp. Any identifiers used in the expression must be names of
log header fields.

FIRST RECORD condition
Specifies a condition that the first record in the log data set should satisfy. If this condition is not met,
the log collector gives a warning message.

Any identifiers used in the condition must be names of log header fields.

LAST RECORD condition
Specifies a condition that the last record in the log data set should satisfy. If this condition is not met,
the log collector gives a warning message.

Any identifiers used in the condition must be names of log header fields.

LOGPROC procedure-name
Identifies the log procedure for the log. The log procedure must be a load module, available in a load
library under the name procedure-name.
LANGUAGE

Specifies the interface to the procedure: the language, linkage convention, and parameters.
ASM

The procedure is written in Assembler and is called using standard System/390 linking
conventions. It returns length of the output record in a field within the record.

ASML
The procedure is written in Assembler and is called using standard System/390 linking
conventions. It returns length of the output record in a parameter.

C
The procedure is written in C and is called using persistent C environment. It returns length of
the output record in a field within the record.

See Chapter 13, “Log and record procedures,” on page 173 for details.
PARM expression

Specifies an expression that the log collector evaluates and passes to the log procedure the first
time it is called. The procedure must understand the format and interpret the value derived from
the expression.

The expression cannot contain identifiers. The result of expression must be an integer, a floating-
point number, or a character string.

Examples
Define a log type named SMF, identifying fields where the log collector can obtain timestamp information.
Also, tell the log collector how to determine the first and last records in this log.

Log collector language statements

Chapter 11. Log collector language statements 127

 DEFINE LOG XMP
 VERSION 'IBM.120'
 HEADER(XMPLEN LENGTH 2 BINARY,
 XMPSEG LENGTH 2 BINARY,
 XMPFLG LENGTH 1 BIT,
 XMPRTY LENGTH 1 BINARY,
 XMPTME TIME(1/100S),
 XMPDTE DATE(0CYYDDDF),
 XMPSID CHAR(4),
 XMPSSI CHAR(4),
 XMPSTY LENGTH 2 BINARY)
 TIMESTAMP TIMESTAMP(XMPDTE,XMPTME)
 FIRST RECORD XMPRTY = 2
 LAST RECORD XMPRTY = 3;

Figure 81. DEFINE LOG statement

For more information about using the DEFINE LOG statement, see “Defining a log” on page 7 and
“Verifying log data sets during data collection” on page 64.

DEFINE PURGE
Use the DEFINE PURGE statement to store a purge condition. The stored condition is used by the PURGE
statement to determine which data should be purged (see “PURGE” on page 153).

Syntax
DEFINE PURGE

VERSION string-constant

FROM table-name

WHERE sql-condition

Parameters
VERSION string-constant

The string specified by the string-constant is stored together with the purge condition, to identify the
statement that was used to create the condition. The string can be at most 18 bytes long. Omitted
VERSION means the same as specifying VERSION '.

Version names are used by the IBM Z Decision Support installation program to decide which
definitions should be replaced. All definitions supplied by IBM have version names starting with 'IBM'.
To ensure correct installation of new releases, do not use such names for your own definitions. See
Figure 82 on page 129 for an example of how VERSION is used by IBM. Refer to the Administration
Guide and Reference for information on how to use VERSION.

FROM table-name
Specifies the name of the table to which the purge condition applies.

WHERE sql-condition
Specifies which data in the table should be deleted by PURGE. The sql-condition is executed by the
database manager.

The sql-condition must be a valid SQL search condition for the table table-name, and its individual
tokens must be recognized by the log collector.

Examples
Write a DEFINE PURGE statement to define conditions so that the log collector deletes data in the
IMS_TRANSACTIONS_H table when the APPLICATION is not equal to ACCT and the date in the data is
more than 7 days old, or when the APPLICATION is ACCT and the data is more than 14 days old:

Log collector language statements

128 IBM Z Decision Support : Language Guide and Reference

 DEFINE PURGE
 VERSION 'IBM.120'
 FROM IMS_TRANSACTIONS_H
 WHERE APPLICATION <> 'ACCT' AND DATE < CURRENT DATE - 7 DAYS
 OR APPLICATION = 'ACCT' AND DATE < CURRENT DATE - 14 DAYS;

Figure 82. Example of the DEFINE PURGE statement

Usage
You can have at most one purge condition for each table. If you execute a DEFINE PURGE statement for a
table that already has a purge condition, the new condition replaces the old condition.

DEFINE RECORD
Use the DEFINE RECORD statement to define a record type.

Syntax
DEFINE RECORD record-name

VERSION string-constant

IN LOG

log-name

BUILT BY procedure-name

IDENTIFIED BY condition

FIELDS (

,

field)

SECTION section

section
section-name

IN SECTION section-name PRESENT IF condition

OFFSET expression LENGTH expression

NUMBER expression

*

REPEATED

FIELDS (

,

field)

field
field-name

* OFFSET integer-constant

LENGTH integer-constant

*

field-format

Log collector language statements

Chapter 11. Log collector language statements 129

Parameters
record-name

The name of the record type being defined. It can be any identifier, except that it cannot both start and
end with an asterisk (*). All record types defined to the log collector must have distinct names.

VERSION string-constant
The string specified by the string-constant is stored together with the definition, to identify the
statement that was used to create the definition. The string can be at most 18 bytes long. Omitted
VERSION means the same as specifying VERSION '.

If the stored definition is later altered by means of an ALTER RECORD statement, its version
identification is changed to 'ALTERED'.

Version names are used by the IBM Z Decision Support installation program to decide which
definitions should be replaced. All definitions supplied by IBM have version names starting with 'IBM'.
To ensure correct installation of new releases, do not use such names for your own definitions. See
Figure 83 on page 136 for an example of how VERSION is used by IBM. Refer to the Administration
Guide and Reference for information on how to use VERSION.

IN LOG log-name
Indicates that this record is encountered when processing log data sets of type log-name (and only
such logs). The record is one of the records in the log, or is built by a record procedure from one of the
records in the log (or from other records built from these).

BUILT BY procedure-name
Indicates that this record does not appear in the log data set, but is built by the record procedure
procedure-name. An omitted BUILT BY clause means that the record appears in the log data set.

IDENTIFIED BY condition
Tells how to distinguish records of this type from other records. A record is of the type record-name if
the condition is true. A specific record may satisfy the IDENTIFIED BY condition of several record
definitions. The log collector uses then only one of these definitions (undefined which one).

Any identifiers used in the condition must be names of fields defined directly in the record (not in the
sections within the record).

An omitted IDENTIFIED BY clause is equivalent to specifying a condition that is true for every record.
SECTION section

Defines one section. There is a limit of 300 sections in a record. These clauses describe a section:
section-name

The name of the section. It can be any identifier. Section names must be unique within a record
type.

IN SECTION section-name
Indicates that the section being defined is a subsection of the section named section-name. If you
omit the IN clause, the section is a section of the record. The section section-name must be
defined earlier in this record definition.

PRESENT IF condition
Indicates that the section is optional. The section is absent if the condition is not true. The section
may be absent even if the condition is true, if the containing section (or record) is too short to
contain the first byte of the section.

Any identifiers used in the condition must be names of fields in the section being defined, in the
containing sections, in the record, or in previously defined non-repeated subsections of these.

OFFSET expression
Defines the offset of the section within the containing section (or record). Notice that offsets in
varying-length records (record format V, VB, or VBS) include the 4-byte record descriptor word.

The expression must specify an integer ≥ 0. Any identifiers used in the expression must be names
of fields in the containing sections, in the record, or in previously defined non-repeated
subsections of these.

Log collector language statements

130 IBM Z Decision Support : Language Guide and Reference

If you omit OFFSET, the section starts at the end of the most recently defined section with the
same IN SECTION attribute. That section cannot be a repeated section. If no section with the
same IN SECTION attribute has been previously defined, an omitted OFFSET means offset 0.

LENGTH expression
Defines the length of the section.

The expression must specify an integer > 0. Any identifiers used in the expression must be names
of fields in the section being defined, in the containing sections, in the record, or in previously
defined non-repeated subsections of these.

If you omit LENGTH, the log collector assumes the minimum length needed to contain all named
fields specified for this section.

If the containing section (or record) is too short to contain the whole section, the log collector
assumes that the section extends up to the end of the containing section (or record). If the
containing section (or record) is too short to contain the first byte of the section, the section is
absent.

NUMBER expression
Defines the number of occurrences of the section.

The expression must specify an integer ≥ 0. Any identifiers used in the expression must be names
of fields in the containing sections, in the record, or in previously defined non-repeated
subsections of these.

An omitted NUMBER clause means the same as NUMBER 1.

NUMBER *
Defines the number of occurrences of the section to be as many occurrences as the containing
section (or record) can hold.

REPEATED
Means that the section is repeated. If you omit REPEATED, the section is not repeated.

FIELDS (field, ...)
Defines all fields of the record or section. There is a limit of 2␠000 fields in a record.

field
Defines one field.

This general rule applies to all fields.

The LENGTH and OFFSET (explicit or default) define a field as an area so many bytes long, starting at a
specific place in the record (or section). If the record (or section) is too short to contain ALL bytes of a
field, the field is considered absent and a reference to it produces null value.

The above rule has one exception: LENGTH *. The asterisk length means that the field extends up to
the end of the record (or section). The field is absent if the record (or section) is too short to contain
the first byte of the field.
field-name

The name of the field. It can be any identifier. Field names must be unique within a record type.
OFFSET integer-constant

Defines the offset, in bytes, of the field in the record (or section). Notice that offsets in varying-
length records (record format V, VB, or VBS) include the 4-byte record descriptor word.

If you omit OFFSET, the field starts at the end of the field defined just before it. The preceding field
cannot have an asterisk length. If you omit the offset for the first field in the list, that field begins
at offset 0.

LENGTH integer-constant
Defines the length of the field in bytes. The allowed lengths depend on the format of the field. See
Table 37 on page 132; the Length column states the possible length(s) of the field.

Log collector language statements

Chapter 11. Log collector language statements 131

If you omit LENGTH, the log collector uses the default length depending on the field format. If the
Length column in Table 37 on page 132 specifies a single value, this is the default. Otherwise the
default is stated in the column.

LENGTH *
Indicates that the field extends up to the end of the containing structure (record or section).

field-format
Specifies the format of the data contained in the field. The possible values of field-format are
listed in Table 37 on page 132, in the Field format column. The Data type column states the data
type to which the log collector automatically converts the content of the field when it uses that
field.

If you omit the field format, the field format is HEX.

Table 37. Field formats

Field format Contents Length in
bytes

Data type

BINARY BINARY
SIGNED BINARY
UNSIGNED

Binary integer represented
according to System/390
architecture. The default is SIGNED
for lengths 2, 4, and 8, and
UNSIGNED for lengths 1 and 3.

1,2,3,4,8
default 4

Integer for SIGNED of
 length≤4 and
 UNSIGNED of
 length≤3;
otherwise floating-point

EXTERNAL HEX A string of bits representing an
integer in hexadecimal characters.

2,4,8
default 8

String

EXTERNAL INTEGER A string of characters, representing
an integer in the same format as for
integer constants. Optional sign,
leading and trailing blanks are
allowed.

1 - 32
default 8

Integer

DECIMAL(p,s)

where 1 ≤ p≤ 31 and 0 ≤
s≤ p

Packed decimal number of
System/390 architecture, with
precision p and scale s. The
precision is the total number of
decimal digits. Odd p means a
signed number; even p means an
unsigned number. The scale is the
number of digits after the decimal
point.

Integer
part of (p
+1)/2

Integer if s=0 and p≤9;
otherwise floating-point

ZONED(p,s)

where 1 ≤ p≤ 31, and 0 ≤
s≤ p

Unsigned zoned decimal number of
System/390 architecture, with
precision p and scale s. The
precision is the total number of
decimal digits. The scale is the
number of digits after the decimal
point.

p Integer if s=0 and p≤9;
otherwise floating-point

FLOAT A floating-point number of
System/390 architecture, short (4
bytes) or long (8 bytes).

4, 8
default 8

Floating-point

Log collector language statements

132 IBM Z Decision Support : Language Guide and Reference

Table 37. Field formats (continued)

Field format Contents Length in
bytes

Data type

EXTERNAL FLOAT A string of characters expressing a
floating-point number in the same
format used for floating-point
constants. Leading and trailing
blanks are allowed.

1 - 32
default 8

Floating-point

CHAR A string of characters. May include
sequences of double-byte
characters, enclosed between shift-
out and shift-in characters.

1 - 254
default 1

String

CHAR(n)

where 1 ≤ n≤ 254

A string of characters occupying n
bytes. May include sequences of
double-byte characters, enclosed
between shift-out and shift-in
characters.

n String

CHAR(*) A string of characters, extending up
to the end of the containing
structure. If the string is longer than
254 bytes, it is truncated. This
format is only allowed with LENGTH
*.

* (1-254) String

VARCHAR A string of characters including
length information. The first two
bytes contain the length l of the data
as a binary integer; the remaining
bytes contain the data itself. The
length l may be 0, and cannot
exceed the length of the field minus
2. The data portion of the string may
include sequences of double-byte
characters, enclosed between shift-
out and shift-in characters.

3-256
default 8

String

BIT A string of bits. Converted to string
of characters "0" and "1"
representing individual bits.

1 - 31
default 1

String

BIT(n)

where 8 ≤ n≤ 248, n
multiple of 8

A string of n bits. Converted to string
of characters "0" and "1"
representing individual bits.

n/8 String

HEX A string of bits. Converted to string
of characters "0" through "F"
representing the string in
hexadecimal notation.

1 - 127
default 1

String

Log collector language statements

Chapter 11. Log collector language statements 133

Table 37. Field formats (continued)

Field format Contents Length in
bytes

Data type

DATE(0CYYDDDF) Date in the format 0cyydddF
(packed), where c indicates the
century (0=1900, 1=2000), yy is the
year within the century, ddd is the
day within the year, and F can have
any value. (F is ignored and is not
checked to be a valid decimal sign).

4 Date

DATE(YYYYDDDF) Date in the format yyyydddF
(packed), where yyyy is the year, ddd
is the day within the year, and F can
have any value. (F is ignored and is
not checked to be a valid decimal
sign).

4 Date

DATE(YYDDDF) Date in the format yydddF (packed),
where yy is the year, ddd is the day
within the year, and F can have any
value. (F is ignored and is not
checked to be a valid decimal sign).

3 Date

DATE(CYYMMDDF) Date in the format cyymmddF
(packed), where c indicates the
century (0=1900, 1=2000), yy is the
year within the century, mm is the
month, dd is the day of month, and F
can have any value. (F is ignored and
is not checked to be a valid decimal
sign).

4 Date

DATE(YYMMDD) Date as character string yymmdd,
where yy is the year, mm is the
month, and dd is the day. yy≥50
means year 19yy; yy<50 means year
20yy.

6 Date

DATE(MMDDYY) Date as character string mmddyy,
where mm is the month, dd is the
day, and yy is the year.

6 Date

DATE(MMDDYYYY) Date as character string mmddyyyy,
where mm is the month, dd is the
day, and yyyy is the year.

8 Date

TIME(1/100S) A 32-bit binary integer representing
time in hundredths of a second
elapsed since hour 0.

4 Time

TIME(HHMMSSTF) Time in the format hhmmsstF
(packed), where hh is hours, mm is
minutes, ss is seconds, t is tenths of
a second, and F can have any value.
(F is ignored and is not checked to
be a valid decimal sign).

4 Time

Log collector language statements

134 IBM Z Decision Support : Language Guide and Reference

Table 37. Field formats (continued)

Field format Contents Length in
bytes

Data type

TIME(0HHMMSSF) Time in the format 0hhmmssF
(packed), where hh is hours, mm is
minutes, ss is seconds, and F can
have any value. (F is ignored and is
not checked to be a valid decimal
sign).

4 Time

TIME(HHMMSSXF) Time in the format hhmmssxF
(packed), where hh is hours, mm is
minutes, ss is seconds, x is
sixteenths of a second, and F can
have any value. (F is ignored and is
not checked to be a valid decimal
sign).

4 Time

TIME(HHMMSSTH) Time in the format hhmmssth
(packed), where hh is hours, mm is
minutes, ss is seconds, and th is
hundredths of a second.

4 Time

TIME(HHMMSSU6) Time in the format hhmmssuuuuuu
(packed), where hh is hours, mm is
minutes, ss is seconds, and uuuuuu
is microseconds.

6 Time

TIME(HHMMSS) Time as character string hhmmss,
where hh is hours, mm is minutes,
and ss is seconds.

6 Time

INTV(MMSSTTTF) Time duration in the format
mmsstttF (packed), where mm is
minutes of duration, ss is seconds,
ttt is milliseconds, and F can have
any value. The duration is converted
to milliseconds and expressed as an
integer. (F is ignored and is not
checked to be a valid decimal sign).

4 Integer

TIMESTAMP(TOD) Date and time in System/390 time-
of-day (TOD) clock format: the
number of microseconds since the
start of year 1900, expressed as a
binary number, with the highest bit
position representing 251.

4,8
default 8

Timestamp

Examples
Figure 83 on page 136 shows a DEFINE RECORD statement for a simple record without sections.

Log collector language statements

Chapter 11. Log collector language statements 135

 DEFINE RECORD XMPACCT_01
 VERSION 'IBM.120'
 IN LOG VMACCT
 IDENTIFIED BY XMPCODE='01'
 FIELDS
 (XMPUSER OFFSET 0 LENGTH 8 CHAR,
 XMPNUM OFFSET 8 LENGTH 8 CHAR,
 XMPDATE OFFSET 16 LENGTH 6 DATE(MMDDYY),
 XMPTIM OFFSET 22 LENGTH 6 TIME(HHMMSS),
 XMPCONT OFFSET 28 LENGTH 4 BINARY,
 XMPTIME OFFSET 32 LENGTH 4 BINARY,
 XMPVTIM OFFSET 36 LENGTH 4 BINARY,
 XMPPGRD OFFSET 40 LENGTH 4 BINARY,
 XMPPGWT OFFSET 44 LENGTH 4 BINARY,
 XMPIOCT OFFSET 48 LENGTH 4 BINARY,
 XMPPNCH OFFSET 52 LENGTH 4 BINARY,
 XMPLINS OFFSET 56 LENGTH 4 BINARY,
 XMPCRDS OFFSET 60 LENGTH 4 BINARY,
 XMPVECTM OFFSET 64 LENGTH 4 BINARY,
 XMPVVECT OFFSET 68 LENGTH 4 BINARY,
 * OFFSET 72 LENGTH 6 CHAR,
 XMPCODE OFFSET 78 LENGTH 2 CHAR);

Figure 83. Example of a DEFINE RECORD statement

For more information about using the DEFINE RECORD statement, see “Defining a record” on page 7 and
“Defining sections within a record” on page 16.

Usage
Using facilities of the log collector language, you can process date/time formats other than those
supported in the DEFINE RECORD statement. As an example, suppose that your records contain date in
the form of a character string yyddd, where yy are the last two digits of year, and ddd is day number within
the year. The date starts at offset 36 within the record. To process the date, specify these fields in your
DEFINE RECORD statement:

 YY OFFSET 36 LENGTH 2 CHAR,
 DDD OFFSET 38 LENGTH 3 EXTERNAL INTEGER,

To obtain the date, use this expression in your DEFINE UPDATE statement:

 DATE('19' || YY || '-01-01') + (DDD-1) DAYS

Another example of processing an unsupported field format is given in “Example log procedures” on page
180.

DEFINE RECORDPROC
Use the DEFINE RECORDPROC statement to specify record procedure, that is, a procedure that the log
collector calls each time it processes a record of a particular type.

Syntax
DEFINE RECORDPROC procedure-name

VERSION string-constant

FOR

,

record-name procedure-parms

procedure-parms

Log collector language statements

136 IBM Z Decision Support : Language Guide and Reference

LANGUAGE

ASM

ASML

C

PARM expression

Parameters
procedure-name

The name of the record procedure. The record procedure must be a load module, available in a load
library under the name procedure-name.

VERSION string-constant
The string specified by the string-constant is stored together with the definition, to identify the
statement that was used to create the definition. The string can be at most 18 bytes long. Omitted
VERSION means the same as specifying VERSION '.

If the stored definition is later altered by means of an ALTER RECORDPROC statement, its version
identification is changed to 'ALTERED'.

Version names are used by the IBM Z Decision Support installation program to decide which
definitions should be replaced. All definitions supplied by IBM have version names starting with 'IBM'.
To ensure correct installation of new releases, do not use such names for your own definitions. See
Figure 84 on page 138 for an example of how VERSION is used by IBM. Refer to the Administration
Guide and Reference for information on how to use VERSION.

FOR record-name , ...
Enumerates record types that this record procedure processes.

LANGUAGE
Specifies the interface to the procedure: the language, linkage convention, and parameters.
ASM

The procedure is written in Assembler and is called using standard System/390 linking
conventions. It returns length of the output record in a field within the record.

ASML
The procedure is written in Assembler and is called using standard System/390 linking
conventions. It returns length of the output record in a parameter.

C
The procedure is written in C and is called using persistent C environment. It returns length of the
output record in a field within the record.

See Chapter 13, “Log and record procedures,” on page 173 for details.
PARM expression

Specifies an expression that the log collector evaluates and passes to the procedure the first time it is
called. The procedure must understand the format and interpret the value derived from the
expression.

The expression cannot contain identifiers. The result of expression must be an integer, a floating-point
number, or a character string.

Examples
Identify an assembly language program, DRL2CICS, that processes record types SMF_110_1 and
SMF_110_V2. The program requires a variable name CICS_OPTION. Write this DEFINE RECORDPROC
statement to identify the record procedure:

Log collector language statements

Chapter 11. Log collector language statements 137

 DEFINE RECORDPROC DRL2CICS
 VERSION 'IBM.120'
 FOR SMF_110_1, SMF_110_V2
 LANGUAGE ASM
 PARM &CICS_OPTION;

Figure 84. DEFINE RECORDPROC statement

For more information about using the DEFINE RECORDPROC statement, see “Specifying log and record
procedures” on page 174.

DEFINE UPDATE
Use the DEFINE UPDATE statement to specify how to process data from a given record type or a given
data table (the source of the update), and how to store the result in another data table (the target of the
update).

Syntax
DEFINE UPDATE update-name

VERSION string-constant

FROM

source-name

SECTION section-name WHERE condition

TO table-name

apply-schedule-clause distribute-clause

let-clause group-by-clause set-clause

merge-clause

Parameters
update-name

The name of the update being defined. It can be any identifier. All updates defined to the log collector
must have distinct names.

VERSION string-constant
The string specified by the string-constant is stored together with the definition, to identify the
statement that was used to create the definition. The string can be at most 18 bytes long. Omitted
VERSION means the same as specifying VERSION '.

If the stored definition is later altered by means of an ALTER UPDATE statement, its version
identification is changed to 'ALTERED'.

Version names are used by the IBM Z Decision Support installation program to decide which
definitions should be replaced. All definitions supplied by IBM have version names starting with 'IBM'.
To ensure correct installation of new releases, do not use such names for your own definitions. For an
example of how VERSION is used by IBM, see Figure 85 on page 139. For information about using
VERSION, refer to the Administration Guide and Reference .

FROM source-name
Identifies the source for the update definition. Must be a record type name or a table name.
SECTION section-name

Specifies that the source of the update is a repeated section section-name of the record source-
name. As explained in “Using repeated sections within records” on page 36, the log collector then

Log collector language statements

138 IBM Z Decision Support : Language Guide and Reference

generates an internal record for each occurrence of the repeated section. The source of the
update is that internal record.

If the record source-name has repeated sections, and you omit the SECTION clause, the update
can only use the data that is outside the repeated sections.

WHERE condition
Limits the update to only those source records or rows for which the condition is true. Any identifier
used in the condition must be the name of a field in the source record or of a column in the source
table.

TO table-name
Names the table to be updated.

apply-schedule-clause ;distribute-clause ;let-clause ;group-by-clause ;set-clause ;merge-clause
These clauses specify the processing to be done. You can think of them as instructions, executed in
the order they appear in the statement. They are described in detail in separate sections.

You will normally use only two or three of these clauses in one update definition. For the update
definition to make sense, you must specify at least one of these: GROUP BY clause, SET clause, or
MERGE clause.

The first clause that you specify uses as its input the source records or rows from the table source-
name. Each of the subsequent clauses uses the result of the preceding clause as its input. The result
of the APPLY SCHEDULE and DISTRIBUTE clauses is a temporary internal table. The LET clause only
defines more names, and passes the internal table (if any) to the next clause. The result of GROUP BY
clause are groups of records or rows. The result of SET and MERGE clauses are updates to the target
table. Any identifier used in an expression in any of the clauses must be the name of a field (or
column) in the source record (or table), or a name introduced in one of the preceding clauses. Notice
that the APPLY SCHEDULE clause introduces one name (that of status column), the DISTRIBUTE
introduces two names (these of timestamp and interval column), and the LET clause can introduce
any number of names.

Examples
Figure 85 on page 139 shows a DEFINE UPDATE statement that tells the log collector how to enter data
from VM accounting records (record type VMACCT_01) into table VM_ACCOUNTING_D.

 DEFINE UPDATE MKTVACC_01D
 VERSION 'IBM.120'
 FROM VMACCT_01
 TO VM_ACCOUNTING_D
 GROUP BY
 (DATE = ACODATE,
 USER_ID = ACOUSER,
 ACCOUNT_NUMBER = ACONUM)
 SET
 (CONNECT_TIME = SUM(ACOCONT),
 PROCESSOR_TIME = SUM(ACOTIME/1000),
 VIRTPROC_TIME = SUM(ACOVTIM/1000),
 PAGE_READS = SUM(ACOPGRD),
 PAGE_WRITES = SUM(ACOPGWT),
 IO_COUNT = SUM(ACOIOCT),
 PUNCH_CARDS = SUM(ACOPNCH),
 PRINT_LINES = SUM(ACOLINS),
 READER_CARDS = SUM(ACOCRDS),
 VECTOR_TIME = SUM(ACOVECTM/1000),
 VECTOR_OVERHEAD = SUM(ACOVECTT/1000));

Figure 85. DEFINE UPDATE statement

APPLY SCHEDULE clause
This clause applies a specified schedule to the source. The source may be a record type or a table. For the
purpose of this description, it is assumed to be a table.

Log collector language statements

Chapter 11. Log collector language statements 139

The source must contain availability data. That means each row must represent an interval described by
three items: interval type, interval start, and interval end. The row can also contain other data.

The schedule is obtained from the table DRLSYS.SCHEDULE.

The result of the APPLY SCHEDULE clause is a temporary internal table. It is a copy of the source table,
with these modifications:

• The intervals are split on boundaries between schedule periods. The rows resulting from the split
contain the same data as the original row, except the interval type, interval start, and interval end, which
are modified.

• A status column is added. The column contains equal sign (=) if the interval is within the schedule, or
the letter X if the interval is outside the schedule.

See “Comparing actual availability to scheduled availability” on page 55 for more information about using
the APPLY SCHEDULE clause.

The syntax of the APPLY SCHEDULE clause is:

APPLY SCHEDULE expression TO  column-name-1 ,  column-name-2 ,  column-name-3

STATUS identifier

expression
Specifies the name of the schedule to use. The expression must specify a character string.

column-name-1
Names the source column that contains interval type code. It must be a character column of length 3.

column-name-2
Names the source column that contains the interval start. It must be a timestamp column.

column-name-3
Names the source column that contains the interval end. It must be a timestamp column.

STATUS identifier
Specifies the name for the status column in the resulting internal table.

DISTRIBUTE clause
This clause distributes input values over specified time periods. The input to this clause is the source
record type, or source table, or the internal table that is the result of the preceding APPLY SCHEDULE
clause. For the purpose of this description, it is assumed to be a table.

Each input row must contain data related to a time interval.

The result of the DISTRIBUTE clause is a temporary internal table. It is a copy of the source, with these
modifications:

• The intervals are split on boundaries between the time periods. The rows resulting from the split
contain the same data as the original row, except for the columns specified to be distributed. The data
in these columns is distributed in proportion to the length of the interval.

• A timestamp and interval columns are added. The timestamp column contains the start of the interval
represented by the row. The interval column contains the length of the interval in seconds.

See “Distributing measurements” on page 49 for more information about using the DISTRIBUTE clause.

The syntax of the DISTRIBUTE clause is:

Log collector language statements

140 IBM Z Decision Support : Language Guide and Reference

DISTRIBUTE

,

field-name

column-name

BY expression START expression

END expression TIMESTAMP identifier INTERVAL identifier

field-name ;column-name
Names a field or column to be distributed. The field or column must contain a numeric value. The
corresponding column in the resulting internal table contains floating-point numbers.

BY expression
Specifies the length of the distribution period in seconds. The periods start at midnight and are all of
the same length, except possibly the last one before next midnight. The expression must specify an
integer.

START expression
Identifies the start time of the interval represented by the input row. The expression must specify a
timestamp.

END expression
Identifies the end time of the interval represented by the input row. The expression must specify a
timestamp.

TIMESTAMP identifier
Specifies the name of the timestamp column in the resulting internal table.

INTERVAL identifier
Specifies the name of the interval column in the resulting internal table.

LET clause
Using this clause, you can give names to expressions that are frequently used in the next clauses. This
saves you writing, but also speeds up the processing. For example, if you use data from a record field, the
log collector reads and converts the contents of the field every time you specify the name of that field. If
you give a name to the value from the field, and then use that name, the conversion will be done only
once.

The syntax of the LET clause is:

LET (

,

identifier =  expression)

expression
The log collector evaluates this expression and assigns the specified name to the result. The
expression can use the names defined earlier in the same LET clause.

identifier
Specifies the name assigned to the result of the expression.

The name can be any identifier distinct from the names of fields (or columns) in the source, the name
of the status column specified by APPLY SCHEDULE (if APPLY SCHEDULE was used), the names of
timestamp and interval columns specified by DISTRIBUTE (if DISTRIBUTE was used), and the names
defined earlier in the same LET clause.

GROUP BY clause
This clause groups records or rows by specified grouping values. The input to this clause is the source
record type, or source table, or the internal table that is the result of the preceding APPLY SCHEDULE or
DISTRIBUTE clause. For the purpose of this description, it is assumed to be a table.

Log collector language statements

Chapter 11. Log collector language statements 141

The result of GROUP BY are groups of the input rows, such that all rows within each group have the same
grouping values. All grouping values must be non-null. A row that has null as any of its grouping values is
not included in any group.

If you omit the GROUP BY clause, all input rows are treated as one group.

See “Understanding the GROUP BY clause” on page 8 for more information about using the GROUP BY
clause.

The syntax of the GROUP BY clause follows.

GROUP BY (

,

column-name =  expression)

expression
Specifies one grouping value.

column-name
Names the column where to store the grouping value. It must be the name of a column in the target
table. The column cannot be a decimal or long string column.

SET clause
This clause summarizes groups of records or rows resulting from GROUP BY. For the purpose of this
description, the groups are assumed to consist of rows.

The SET clause represents each group by one row in the target table. In that row, the grouping values are
stored in the columns specified in the GROUP BY clause. The values of other columns are derived from all
rows in the group, as specified in the SET clause. The columns not named in the GROUP BY and SET
clauses are set to null.

See “Understanding the SET clause” on page 9 for more information about using the SET clause.

The syntax of the SET clause is:

SET (

,

column-name = accumulation)

accumulation
SUM ( expression)

MIN ( expression)

MAX ( expression)

COUNT ( expression)

FIRST ( expression)

LAST ( expression)

AVG ( expression ,  column-name)

PERCENTILE ( expression ,  column-name ,  integer-constant)

column-name
Names a column of the target table. The accumulation specifies how to derive the value to be stored
in that column.

SUM(expression)
Evaluates the expression for each row in the group. The value of SUM is the sum of all non-null values
thus obtained. If the value of expression is null for all records (or rows) in the group, the value of SUM
is null.

Log collector language statements

142 IBM Z Decision Support : Language Guide and Reference

The expression must specify a numeric value. If that value is not of the same type as the column
column-name, it is converted to the type of the column, and the sum is computed for the converted
values.

MAX(expression)
Evaluates the expression for each row in the group. The value of MAX is the greatest of all non-null
values thus obtained. If the value of expression is null for all records (or rows) in the group, the value
of MAX is null.

MIN(expression)
Evaluates the expression for each row in the group. The value of MIN is the least of all non-null values
thus obtained. If the value of expression is null for all rows in the group, the value of MIN is null.

COUNT(expression)
Evaluates the expression for each row in the group. The value of COUNT is the number of non-null
values thus obtained.

The result is an integer.

FIRST(expression)
Evaluates the expression for each row in the group, in the order they are processed. The result is the
first non-null value of expression. If the value of expression is null for all records (or rows) in the group,
the value of FIRST is null.

LAST(expression)
Evaluates the expression for each row in the group, in the order they are processed. The result is the
last non-null value of expression. If the value of expression is null for all records (or rows) in the group,
the value of LAST is null.

AVG(expression,column-name)
Evaluates the expression for each row in the group. The result is the average or weighted average of
the values thus obtained, depending on column-name.

The column-name must name a column whose value is specified in the same SET clause. The value of
column-name must be specified using either COUNT or SUM.

If column-name is specified by means of COUNT, its value must be equal to the number of non-null
values of expression. The result of AVG is then the average of all non-null values of expression in the
group. If the value of expression is null for all records in the group, the value of AVG is null. If column-
name is specified by means of SUM, the result of AVG is the weighted average of all non-null values of
expression in the group. The argument of SUM obtained for the same row is used as the weight. If the
value of expression is null for all records in the group, or the sum of all weights is 0, the value of AVG is
null. The expression must specify a numeric value. The result of AVG must be stored in a floating-point
column.

PERCENTILE(expression,column-name,integer-constant)
Evaluates the expression for each row in the group. The value of PERCENTILE is a value p such that
integer-constant percent of all non-null values resulting from evaluating the expressions is lower than
p, and 100-integer-constant percent is higher than p. The integer-constant value must be in the range
1-99.

The column-name must name a column whose value is specified in the same SET clause. Its value
must be specified using COUNT, and must be equal to the number of non-null values of expression.

The expression must specify a numeric value. The result of PERCENTILE must be stored in a floating-
point column.

PERCENTILE can be used only if the source of the update is a record.

If the value of a column is specified by means of PERCENTILE, it can be specified in only one update
definition.

Log collector language statements

Chapter 11. Log collector language statements 143

MERGE clause
This clause merges availability intervals. The input to this clause are groups of records or rows resulting
from GROUP BY. For the purpose of this description, the groups are assumed to consist of rows.

The parameters of the MERGE clause specify how to derive from each row a piece of evidence about
availability of some resource. It is described by four parameters: start and end times of a time interval,
the interval type that identifies the status of the resource during the interval, and the quiet interval.

The MERGE clause combines this evidence and produces a set of rows in the target table that describes
the status of the resource at different times. Each of these rows represents an interval described by
means of start and end times, interval type, and quiet interval. Besides this information, each row
contains the grouping values, in the columns specified by the GROUP BY clause.

See “Understanding the MERGE clause” on page 54 for more information about using the MERGE clause.

The syntax of the MERGE clause is:

MERGE (column-name-1 =  expression-1 , column-name-2 =  expression-2 ,

column-name-3 =  expression-3 , column-name-4 =  expression-4)

expression-1
Specifies the interval type. It must be one of these character strings: |==, ===, ==|, |=|, |XX,
XXX, XX|, or |X|. For information about their meaning, see Table 30 on page 53.

expression-2
Specifies the start time of the interval. It must be a timestamp.

expression-3
Specifies the end time of the interval. It must be a timestamp greater than or equal to the timestamp
specified by expression2.

expression-4
Specifies the quiet interval in seconds. It must be a non-negative integer.

column-name-1
Names the column of the target table where to store the interval type. It must be a character column
of length 3.

column-name-2
Names the column of the target table where to store the start time. It must be a timestamp column.

column-name-3
Names the column of the target table where to store the end time. It must be a timestamp column.

column-name-4
Names the column of the target table where to store the quiet interval. It must be an integer or small-
integer column.

How data is obtained from Db2 tables
These rules apply when the log collector obtains data from a Db2 table:

• The result of a reference to an integer or small integer column is an integer.
• The result of a reference to a floating-point column is a floating-point number. Numbers from single-

precision columns are extended with binary zeros on the right.
• The result of a reference to a decimal column is a floating-point number. If the number from the table

cannot be represented exactly as a floating-point number, it is rounded to the nearest floating-point
value.

• The result of a reference to a character column is a character string. If the string from the table is longer
than 254 bytes, it is truncated to 254 bytes. The truncation does not take into account any double-byte
characters that might be present in the string.

Log collector language statements

144 IBM Z Decision Support : Language Guide and Reference

• The result of a reference to a graphic column is a character string. This character string is obtained by
adding shift-out and shift-in characters at the end of the graphic string from the table. If the string from
the table is longer than 252 bytes, it is truncated to 252 bytes before adding the shift characters.

• The result of a reference to a date/time column is a date/time value of the same type. The time values
from the table are extended with the microseconds part of 0.

How data is stored in Db2 tables
These rules apply when the log collector stores data in SQL tables:

• Numbers can be stored in numeric columns. Character strings can be stored in character columns or
graphic columns. Date/time strings can be stored in date/time columns of the corresponding type. Date/
time values can be stored in date/time columns of the same type and in character columns.

• When a floating-point number is stored in an integer or small integer column, only the integer part of the
number is stored. The fractional part is discarded.

• When a floating-point number is stored in a single-precision floating-point column, it is rounded to the
nearest single-precision value.

• When a floating-point number is stored in a decimal column, it is rounded to the nearest value with the
required scale.

• When a character string is stored in a character column, it is truncated or padded with blanks if needed.
• When a character string is stored in a graphic column, it must have shift-out and shift-in characters at its

ends. These characters are removed. If needed, the result is truncated or padded with blanks.
• When a date/time string is stored in a date/time column, it is converted to the date/time value

represented by the string.
• When a date/time value is stored in a character string column, it is converted to a date/time string

representing that value, and padded with blanks at the end if needed. Truncation is not allowed. The
column must be wide enough to hold the whole string.

• When a time value is stored in a time column, the microseconds part is discarded.

DROP
Use the DROP statement to delete a stored definition. You can drop:

• A log definition
• A record definition
• A record procedure definition
• An update definition
• A purge condition for a table

Syntax
DROP LOG log-name

RECORD record-name

RECORDPROC procedure-name

UPDATE update-name

PURGE FROM table-name

Parameters
LOG log-name

Specifies to drop the log definition log-name.

Log collector language statements

Chapter 11. Log collector language statements 145

RECORD record-name
Specifies to drop the record definition record-name.

RECORDPROC procedure-name
Specifies to drop the record procedure definition procedure-name.

UPDATE update-name
Specifies to drop the update definition update-name.

PURGE FROM table-name
Specifies to drop the purge condition for the table table-name.

Examples
Assume that you want to delete the log definition named SOME_LOG, the record type SOME_REC, and the
purge condition for the data table SOME.DATA_.TABLE. Use these drop statements to remove the log,
record, and purge condition definitions:

DROP LOG SOME_LOG;

DROP RECORD SOME_REC;

DROP PURGE FROM SOME.DATA_.TABLE;

Figure 86. DROP statement

For more information about using the DROP statement, see “Using the DROP statement to delete a record
definition” on page 21 and “Using the DROP statement to delete an update definition” on page 58.

GENERATE INDEX
Use the GENERATE INDEX statement to create a new index on a data table. This statement is converted to
an SQL 'CREATE INDEX' statement. GENERATE INDEX allows index customization without the need to
change the definition members. The created index will be a Unique, Primary index. If you are using a table
space type of RANGE for your component installation the index will be a data-partitioned secondary
index.

Syntax
GENERATE INDEX index-name ON table-name PROFILE string-constant

Parameters
INDEX index-name

Names the index to create.
ON table-name

Names the table to create the index on.
PROFILE string-constant

Specifies the name of a profile in the GENERATE_PROFILES system table. The information in this
profile is used when building the SQL statement that creates the index.

Example
The following example shows a GENERATE INDEX statement.

GENERATE INDEX &PREFIX.SOME_TABLE_IX
 ON &PREFIX.SOME_TABLE PROFILE 'SMF';

Figure 87. GENERATE INDEX statement

Log collector language statements

146 IBM Z Decision Support : Language Guide and Reference

For more information about using the GENERATE INDEX statement, refer to the Administration Guide and
Reference.

GENERATE PARTITIONING
Use the GENERATE PARTITIONING statement to specify range partitioning for a table. This statement is
converted to an SQL 'ALTER TABLE ADD PARTITION BY RANGE' statement. GENERATE PARTITIONING
allows partitioning customization without the need to change the definition members.

GENERATE PARTITIONING only creates a partitioning scheme if the table space used by the table is set
up with a partitioning type of RANGE in the GENERATE_PROFILES system table. In all other cases the
statement is ignored and does not generate any SQL statements.

The GENERATE PARTITIONING statement does not create a partitioning scheme on a table that already
exists. It will only create partitioning if it is executed at the same time that the table is created.

Syntax
GENERATE PARTITIONING ON table-name PROFILE string-constant

Parameters
ON table-name

Names the table to create the partitioning on.
PROFILE string-constant

Specifies the name of a profile in the GENERATE_KEYS system table. The information in this profile is
used when building the SQL statement that creates the index.

Example
The following example shows a GENERATE PARTITIONING statement.

GENERATE PARTITIONING ON &PREFIX.DB2_SYS_PARAMETER
 PROFILE 'SMF'

Figure 88. GENERATE PARTITIONING statement

For more information about using the GENERATE PARTITIONING statement, refer to the Administration
Guide and Reference.

GENERATE TABLESPACE
Use the GENERATE TABLESPACE statement to create a table space. The statement is converted to an SQL
'CREATE TABLESPACE' statement. This statement allows a table space to be created as either partitioned
or non-partitioned without changing the definition members.

The type of table space created will depend on the value of the field TABLESPACE_TYPE in the
GENERATE_PROFILES for the profile specified on the GENERATE statement.

Table 38. Table space type

TABLESPACE_TYPE value Type of Table

RANGE Range Partitioned universal table space with
NUMPARTS determined by the number of entries in
the GENERATE_KEYS system table.

GROWTH Partition-by-growth table space with MAXPARTS as
specified in the GENERATE_PROFILES system table.

Log collector language statements

Chapter 11. Log collector language statements 147

Table 38. Table space type (continued)

TABLESPACE_TYPE value Type of Table

Anything else Partition-by-growth table space

Syntax
GENERATE TABLESPACE identifier PROFILE string-constant

Parameters
TABLESPACE identifier

Names the table space to create. This identifier cannot exceed 8 bytes. It must start with a letter and
must not include special characters.

PROFILE string-constant
Specifies the name of a profile in the GENERATE_PROFILES system table. The information in this
profile is used when building the SQL statement that creates the index.

Example
The following is an example of the GENERATE TABLESPACE statement.

GENERATE TABLESPACE DRLSTBSP PROFILE 'SMF';

Figure 89. GENERATE TABLESPACE statement

For more information about using the GENERATE TABLESPACE statement, refer to the Administration
Guide and Reference.

LIST RECORD
Use the LIST RECORD statement to produce reports directly from a log data set without going through the
collect process. This statement is useful when you want to produce detailed reports that cover only a
short time period.

The log collector presents the output in one of these formats:

1. As a readable file. This format is useful when the log collector produces the report in batch or when no
specific report formatting is required.

2. As an IXF file. QMF can display and format this file. QMF can also load this file into a Db2 table.

You can use LIST RECORD statement to list several record types from the same log. Each record type is
then listed in a separate output file.

LIST RECORD works the same way as update definitions during collect. LIST RECORD has the same
summarization and grouping concepts, and handles repeated sections in the same way as collect.

If LIST RECORD needs to summarize or group the data, the log collector performs data buffering (similar
to collect). Otherwise the writes the result immediately to the output file(s). If the buffer fills up, the log
collector writes the data accumulated so far, and terminates LIST RECORD with a warning message.

LIST RECORD labels the columns in the listing with the field name if the expression is a single field, or
with the first part of the expression if the expression consists of more than one field.

Log collector language statements

148 IBM Z Decision Support : Language Guide and Reference

Syntax

LIST

,

list-specification

LOGFILE file-name

BUFFER SIZE integer-constant

ON OVERFLOW

BREAK

CONTINUE

list-specification
RECORD record-name

SECTION section-name

FIELDS

,

column-specification

WHERE condition

GROUP BY

,

expression

ORDER BY

.

integer-constant

field-name

ASC

DESC

LISTFILE file-name

FORMAT

LIST

IXF

column-specification
expression

accumulation

accumulation

Log collector language statements

Chapter 11. Log collector language statements 149

SUM ( expression)

MIN ( expression)

MAX ( expression)

COUNT ( expression)

FIRST ( expression)

LAST ( expression)

AVG ( expression)

PERCENTILE ( expression ,  integer-constant)

Parameters
list-specification

Specifies how to list one record type. You can think of the different clauses of list-specification as
being interpreted in the order in which they are described below.
RECORD record-name

Names the record type to be listed. If several records are to be listed (more than one list
specification is coded), all record-names coded in the RECORD clauses must belong to the same
log. This optional clause is available:
SECTION section-name

Specifies listing of a repeated section section-name of record record-name. As in the case of
update processing, (explained in “Using repeated sections within records” on page 36), the log
collector generates an internal record for each occurrence of the repeated section. LIST
RECORD lists data from that internal record.

If the record record-name has repeated sections and you omit the SECTION clause, you can
only list data that is outside the repeated sections.

Any identifiers used in the expressions and condition within this list specification must be names
of fields in the record being listed.

WHERE condition
Limits the log collector to list only those records for which the condition is true.

GROUP BY expression, ...
Specifies grouping of records. LIST RECORD produces one row for each unique combination of
values of expressions.

If you omit the GROUP BY clause, all list specifications in the FIELDS clause must be of the same
kind: either all expressions or all accumulations. The result depends on which is the case:

• If all list specifications are expressions, LIST RECORD does not perform any grouping and
produces one row for each record.

• If all list specifications are accumulations, LIST RECORD produces one row that summarizes all
records.

FIELDS column-specification, ...
Defines one row of the output list. Each column-specification defines the value to be listed in one
column. As the syntax diagram shows, each column-specification is either an expression or an
accumulation.

If you specify GROUP BY, all expressions listed in GROUP BY must appear as column
specifications in the FIELDS clause. All the remaining column specifications (if any) must be
accumulations.

If you do not specify GROUP BY, all column specifications must be of the same kind, either all
expressions or all accumulations.

Log collector language statements

150 IBM Z Decision Support : Language Guide and Reference

expression
Specifies a value to be listed. If records are not grouped, it is obtained from the record listed in
the row. If records are grouped, it is a value common to all records in the group.

accumulation
Specifies a value obtained from all records in the group. You can use it only if records are
grouped. The value is obtained in a similar way as in the SET clause of the DEFINE UPDATE
statement (see “SET” on page 158). Note that AVG and PERCENTILE have a syntax that differs
from the SET clause:
AVG(expression)

Calculates the value of expression for each input row that is grouped together to form an
output row. LIST RECORD adds these values and divides by the number of input rows to
the group.

PERCENTILE(expression,integer-constant)
Calculates the value of expression for each input row to a group, places the values in a
buffer and sorts them. Before LIST RECORD writes the grouped output row, it determines
the output value (percentile) where integer-constant percent of the values in the group are
smaller than the output value, and 100-integer-constant percent of the values are larger.

ORDER BY
Orders the output produced by LIST RECORD. If you omit ORDER BY, the order remains the same as
the records in the input log data set.

The output is ordered by the values of the columns you identify. You can identify columns by their
numbers. If the value of a column is specified by means of an expression (not an accumulation), and
this expression is a single field name, you can use that field name to identify the column.

If you identify more than one column, the output is ordered by the values of the first column you
identify, then by the values of the second column, and so on.
integer-constant

Identifies a column to be used for ordering. It is the number of the column, counting from the left.
field-name

Identifies a column to be used for ordering. The field-name must appear as one of column
specifications in the FIELDS clause.

ASC
Orders the data in ascending sequence. This is the default.

DESC
Orders the data in descending sequence.

LISTFILE file-name
Names the output file where the log collector writes the data. The default is DRLLST1 for the first list-
specification, DRLLST2 for the second, and so on. The same file-name may not be used in different list
specifications.

FORMAT
Specifies the format of the list file:
LIST

Write the output in a readable list format. This is the default.
IXF

Write the output in the IXF format.
LOGFILE file-name

Names the input log ddname. The default is DRLLOG.
BUFFER SIZE integer-constant

Specifies the size (in bytes) of the internal buffer used if the LIST RECORD statement includes a
GROUP BY clause or an ORDER BY clause. The default is 10␠000␠000 bytes. The minimum allowed
value is 10␠000 bytes.

Log collector language statements

Chapter 11. Log collector language statements 151

ON OVERFLOW
Specifies the action to be taken when an overflow occurs during LIST RECORD processing when
buffering is in use. The overflow is a situation when an accumulated value exceeds the range allowed
for this type of values. The possible options follow.
BREAK

Stop the processing. The log collector does not produce any LIST RECORD output.
CONTINUE

Reset the accumulated value to 0, write the lost value to the DRLDUMP file, and continue the
processing.

Examples
List the jobs that ran between 2 and 2:30 p.m.

 LIST
 RECORD SMF_030
 FIELDS SMF30TME, -- Time
 SMF30JBN, -- Job name
 SMF30CLS, -- Class
 INTEGER(INTERVAL(SMF30SIT,SMF30TME)), -- Elapsed time (seconds)
 (SMF30CPT+SMF30CPS) / 100.0 -- CPU time (seconds)
 WHERE SUBSTR(SMF30JNM,1,3) = 'JOB'
 AND HOUR(SMF30TME) >= 14
 AND HOUR(SMF30TME) <= 15;

Figure 90. LIST RECORD statement

Figure 91 on page 152 shows messages that the log collector might write to the DRLOUT DD statement as
a result of the LIST RECORD statement in Figure 90 on page 152.

 DRL0300I List started at 2019-06-23-14.30.12
 DRL0302I Processing SMF.DATA.SET on VOL001
 DRL0341I The first-record timestamp is 2019-06-22-04.02.27.
 DRL0380I 102347 records read from the input log
 DRL0342I The last-record timestamp is 2019-06-22-22.35.18.
 DRL0315I Records read from the log or built by log procedure:
 DRL0317I Record name | Number
 DRL0318I -------------------|----------
 DRL0319I SMF_030 | 2489
 DRL0318I -------------------|----------
 DRL0321I Total | 2489
 DRL0381I 42 records written to DRLLST1 file
 DRL0301I List ended at 2019-06-23-14.32.15

Figure 91. Messages from the LIST RECORD statement

Figure 92 on page 152 illustrates the LIST RECORD statement output in the DRLLST1 file.

 SMF30TME SMF30JBN SMF30CLS INTEGER(INTERVAL(SMF3 (SMF30CPT+SMF30CPS) /
 -------- -------- -------- --------------------- ---------------------
 14.00.51 TEST4 A 48 6.20000000000000E+00
 14.02.14 XYZ123 A 518 3.90000000000000E+02
 14.02.19 ABBJ C 111 2.20000000000000E+01
 :

Figure 92. Results from the LIST RECORD statement

LOGSTAT
Use the LOGSTAT statement to print the number of records of different types found in a log data set, and
the number of records built by record procedures.

Log collector language statements

152 IBM Z Decision Support : Language Guide and Reference

Syntax
LOGSTAT log-name

FILE file-name

Parameters
log-name

Is the name of a stored log definition. It identifies the type of log to be processed.
FILE file-name

Names the input DD statement that refers to the log data set. The default file-name is DRLLOG.

Example
Assume that you want to print the different record types in an IMS log data set referred to in the JCL DD
statement IMSLOG1.

LOGSTAT IMS FILE IMSLOG1;

Figure 93. LOGSTAT statement

Figure 94 on page 153 shows the messages produced by the log collector.

DRL0300I Logstat started at 2019-06-23-14.29.41.
DRL0302I Processing IMS.DATA.SET on VOL001
DRL0341I First record timestamp is 2019-06-22-04.02.27
DRL0342I Last record timestamp is 2019-06-22-22.35.18
DRL0003I
DRL0315I Records read from the log or built by log procedure:
DRL0317I Record name | Number
DRL0318I -------------------|----------
DRL0319I IMS_000 | 0
DRL0319I IMS_006 | 191
DRL0319I IMS_007 | 0
DRL0319I IMS_030 | 2489
DRL0319I IMS_039 | 0
DRL0319I IMS_070 | 51
DRL0319I IMS_071 | 51
DRL0319I IMS_072_1 | 918
DRL0320I Unrecognized | 5518
DRL0318I -------------------|----------
DRL0321I Total | 9218
DRL0003I
DRL0316I Records built by record procedures:
DRL0317I Record name | Number
DRL0318I -------------------|----------
DRL0319I IMS_X | 36
DRL0318I -------------------|----------
DRL0321I Total | 36
DRL0301I Logstat ended at 2019-06-23-14.30.12

Figure 94. Messages from the LOGSTAT statement

PURGE
Use the PURGE statement to delete data from data tables based on the stored purge conditions (see
“DEFINE PURGE” on page 128). Only the tables with specified purge conditions are purged.

Log collector language statements

Chapter 11. Log collector language statements 153

Syntax
PURGE

INCLUDE

,

table-name

LIKE string-constant

EXCLUDE

,

table-name

LIKE string-constant

Parameters
INCLUDE

Specifies the tables for which the purge applies. If you specify INCLUDE, the log collector purges only
the specified tables.
table-name

Is the name of a table to be included.
LIKE string-constant

Specifies a group of tables to be included. The tables are those with names matching the pattern
specified as the string-constant. The pattern matching rules are defined in “Pattern matching” on
page 82. If the pattern contains a period (.), the table prefix must match the part before the
period, and the rest of the table name must match the part after the period. For example, the
pattern DRL.CICS% includes all tables whose names start with CICS and have DRL as prefix.

If the pattern does not contain a period, the prefix must be the current user ID, and the rest of the
name must match the whole pattern.

EXCLUDE
Specifies the tables to be excluded from the purge. If you specify EXCLUDE, the log collector purges
all tables with defined purge condition except the specified tables.
table-name

Is the name of a table to be excluded.
LIKE string-constant

Specifies a group of tables to be excluded, using the same rules as for INCLUDE.

Example
Assume that you want to apply the purge definition to all tables that have a prefix of DRL and begin with
CICS except DRL.CICS_APPL1. Use this PURGE statement to include all CICS tables except
DRL.CICS.APPL1:

PURGE INCLUDE LIKE 'DRL.CICS%'
 EXCLUDE DRL.CICS_APPL1;

Figure 95. PURGE statement

For more information about using the PURGE statement, see “Deleting data” on page 31.

Usage
You can specify both INCLUDE and EXCLUDE on a PURGE statement. For example, INCLUDE LIKE
'DRL.CICS%' EXCLUDE DRL.CICS_APPL_H includes all CICS tables except DRL.CICS_APPL_H.

Log collector language statements

154 IBM Z Decision Support : Language Guide and Reference

RECALCULATE
Use the RECALCULATE statement to update one or more data tables with information derived from
another table.

The table used as the source of data in the RECALCULATE statement is called the base table. The tables
being updated with information derived from the base table are called the dependent tables. Each
dependent table must have an update definition either from the base table or from another dependent
table. This update definition is used to calculate the new contents of the dependent table.

You can choose between two alternative ways of updating the tables:

• Recalculation.

The log collector replaces data in the dependent tables by new values, calculated from the current
contents of the base table. The contents of the dependent tables after RECALCULATE reflect the
contents of the base table (with some exceptions resulting from the rule that RECALCULATE never
deletes rows from dependent tables).

You choose this alternative by specifying RECALCULATE FROM.
• Propagation of changes.

You specify a change to the base table. The log collector makes this change and propagates it to the
dependent tables. For example, you increase by 2 the value in some column of the base table. If the
dependent table contains a sum computed from that column, that sum is also increased by 2. But, it
need not be equal to the sum of values currently present in the base table (which is the normal situation
if data were purged).

You choose this alternative by specifying RECALCULATE DELETE, INSERT, or UPDATE.

Note: The RECALCULATE function does not allow for commits to be done until the job completes.

Syntax
RECALCULATE

,

table-name

from-clause

delete-clause

insert-clause

update-clause

BUFFER SIZE 200M

BUFFER SIZE integer K

M

RECALCULATE
,

table-name

from-clause

delete-clause

insert-clause

update-clause

BUFFER SIZE 200M

BUFFER SIZE integer K

M

from-clause

Log collector language statements

Chapter 11. Log collector language statements 155

FROM table-name

WHERE sql-condition

delete-clause
DELETE FROM table-name

WHERE sql-condition

insert-clause
INSERT INTO table-name

(

,

column-name)

VALUES (

,

constant)

update-clause

UPDATE table-name SET (

,

column-name =  expression)

WHERE sql-condition

Parameters
table-name, ...

Lists the dependent tables.

Omitted list means the same as listing all tables that have their contents derived from the base table
by means of update definitions, either direct or cascaded.

FROM table-name
Identifies the table table-name as the base table. Indicates that you want to recalculate the contents
of the dependent tables from the contents of the base table.

The log collector calculates first new rows for all dependent tables that have update definitions from
the base table. It uses these update definitions to calculate the rows. If a new row has the same
GROUP BY values as a row already present in the table, the log collector replaces the old row by the
new. The data from the old row is lost. If the table does not contain a row with the same GROUP BY
values, the log collector inserts the new row into the table.

The procedure is repeated with tables that have update definitions from the tables thus recalculated,
and so on.

No rows are deleted in the process. As a result, an updated table may contain old rows that no longer
reflect any data from the underlying table. These old rows are not used to calculate new rows for the
next table.

It is possible to calculate the new data using only selected rows from the base table. You select the
rows using this clause:
WHERE sql-condition

Specifies which rows to select. The selected rows are those for which the sql-condition is true. If
you omit WHERE, all rows are selected. The sql-condition must be a valid SQL search condition for
the table table-name, and its individual tokens must be recognized by the log collector.

Log collector language statements

156 IBM Z Decision Support : Language Guide and Reference

DELETE FROM table-name
Identifies the table table-name as the base table. Indicates that you want to delete rows from the
base table and propagate the change to the dependent tables.

The change to the dependent tables consists of changing data in the existing rows. No rows are
deleted from the dependent tables.

You specify the rows to be deleted using this clause:
WHERE sql-condition

Specifies the rows to be deleted from the base table. The log collector deletes the rows for which
the sql-condition is true. If you do not specify a WHERE clause, all rows in the table are deleted.
The sql-condition must be a valid SQL search condition for the table table-name, and its individual
tokens must be recognized by the log collector.

INSERT INTO table-name
Identifies the table table-name as the base table. Indicates that you want to insert a row into the base
table and propagate the change to the dependent tables.

If the base table already contains a row with the same GROUP BY values as the row being inserted,
the log collector does not insert a new row. It updates instead the existing row with the specified
values. The log collector uses for this purpose the accumulation functions specified in update
definitions for the table.

The change to the dependent tables can consist of inserting new rows or changing data in the existing
rows. No rows are deleted from the dependent tables. Insertion of rows with duplicate GROUP BY
values follows the same rule as for the base table.

You specify the row to be inserted using these clauses:
(column-name, ...)

Lists the columns for which you specify values. Notice that you must specify values for all GROUP
BY columns.

Omitted list of columns means that you specify values for all columns.

VALUES(constant, ...)
Specifies the values in the row. If the list of columns is present, the constants specify values for
the columns in the order they appear in the list. The number of constants must be the same as the
number of column names.

If the list of columns is omitted, the constants specify values for the columns in the order they
appear in the table. The number of constants must be the same as the number of columns in the
table.

UPDATE table-name
Identifies the table table-name as the base table. Indicates that you want to change one or more rows
in the base table and propagate the change to the dependent tables.

If one or more GROUP BY values in a row is changed, the resulting row can have the same GROUP BY
values as a row already present in the table. The log collector merges then the two rows: it uses data
from the changed row to update the existing row and deletes the changed row. In this process, the log
collector uses the accumulation functions specified in update definitions for the table.

The change to the dependent tables can consist of inserting new rows or changing data in the existing
rows. No rows are deleted from the dependent tables. Insertion of rows with duplicate GROUP BY
values follows the same rule as for INSERT INTO.

You specify the change to the base table using these clauses:
SET (column-name = expression, ...)

Specifies new values for the named columns.
WHERE sql-condition

Specifies the rows to be updated. The log collector updates only the rows for which the sql-
condition is true. If you do not specify a WHERE clause, all rows in the table are updated. The sql-

Log collector language statements

Chapter 11. Log collector language statements 157

condition must be a valid SQL search condition for the table table-name, and its individual tokens
must be recognized by the log collector.

BUFFER SIZE integer-constant
Specifies the size of the internal collect buffer. The default is 200M bytes. The minimum allowed value
is 10K bytes. The maximum size of the internal buffer is limited to the virtual storage available when
the log collector executes. If you specify a BUFFER SIZE that exceeds the available virtual storage, the
log collector abends.

Example
Assume that you want to change an account number. The account number is stored in the column
ACCOUNT_NO of the table ACCOUNT.INFO_TABLE.

Use this RECALCULATE statement to change the account number in the table:

RECALCULATE
 UPDATE ACCOUNT.INFO_TABLE
 SET (ACCOUNT_NO = '880503')
 WHERE ACCOUNT_NO = '880502';

Figure 96. RECALCULATE statement

Because you omitted the list of dependent tables, your change is propagated to all tables that contain
information based on ACCOUNT.INFO_TABLE.

For more information about using the RECALCULATE statement, see “Changing data within tables” on
page 32.

Usage
Be careful when you specify WHERE for a RECALCULATE FROM. Suppose you have three tables:

• TABLE_H, containing hourly data
• TABLE_D, containing data from TABLE_H summarized by day
• TABLE_M, containing data from TABLE_D summarized by month.

Suppose you execute this statement:

RECALCULATE TABLE_D,TABLE_M FROM TABLE_H WHERE DATE='2019-05-21';

The data for the specified day in TABLE_D is recalculated correctly. But, the rows for other days in
TABLE_D are treated as old rows, that are left in the table because of the rule that RECALCULATE does not
delete rows. They are not used to calculate the data for TABLE_M. As a result, the data for May 2000 in
TABLE_M is derived from data for only one day: May 21.

To avoid this problem, use a separate statement for each table:

RECALCULATE TABLE_D FROM TABLE_H WHERE DATE='2019-05-21';
RECALCULATE TABLE_M FROM TABLE_D WHERE MONTH=5;

SET
Use the SET statement to define a named character string. Such a named string is called a variable. The
string itself is called the value of the variable.

You can also use the SET statement to change the value of an existing variable, that is, to replace a named
string by another with the same name.

The variable remains defined until the end of the log collector run.

Log collector language statements

158 IBM Z Decision Support : Language Guide and Reference

Syntax
SET variable-name =  string-constant

Parameters
variable-name

The name of the variable.
string-constant

The value of the variable.

Examples
Assume you want to create a variable named PREFIX with a value of STROMBK. Use this SET statement to
create the variable:

 SET PREFIX = 'STROMBK';

Figure 97. SET statement

If the variable PREFIX already exists, the statement changes its value to STROMBK.

Usage
You can use variables to modify your statements with the help of variable markers (see “Using variables
to modify your text” on page 72) and variable references (see “Obtaining the value of a variable” on page
76). You can also use variables to control certain diagnostic functions. (See Messages and Problem
Determination.)

Log collector language statements

Chapter 11. Log collector language statements 159

Log collector language statements

160 IBM Z Decision Support : Language Guide and Reference

Chapter 12. Report definition language guide

Introducing the report definition language
You can use the report definition language to write definitions for producing reports from the data you
collect using the log collector language.

Note: To use the report definition language, you need to have QMF installed on your system.

The report definition language contains statements that let you:

• Create report definitions
• Create group definitions that are a logical collection of reports about a related topic
• Delete report and group definitions

You can create report definitions using the report definition language, or you can use the reporting dialog.
The predefined reports that are supplied with IBM Z Decision Support are defined with the report
definition language. Users wanting to create new reports usually do this with the reporting dialog. For
more information about using the reporting dialog, refer to the Guide to ReportingGuide to Reporting.

The syntax used to write report and group definition statements is similar to that used to write log
collector language statements. When you execute the report definition program, it stores the report and
group definitions that you create. Then you can use the definitions to produce reports without having to
write the definition each time.

“Implementing the report definition language” on page 161 describes how to use the report definition
language to write a report definition. It explains how to create tabular and graphical reports from data
collected with the log collector.

“Report definition language elements” on page 165 describes the elements associated with the report
definition language.

“Report definition language statements” on page 166 describes each of the statements that you can use
in the report definition language.

Implementing the report definition language

About this task
You use the report definition language to define reports and report groups. To do this, you:

• Create a QMF query that determines how the data in the data table is accessed. Export the query to a
data set.

• Optionally, create a QMF form that specifies how the data is formatted, and export the form to a data
set.

• Write a report definition that identifies the query, form, and other options. You might also write a group
definition to identify a set of reports.

• Execute the report definition language program to store the report definition.

This chapter uses an example to describe how to create a simple QMF query and QMF form. It also
describes how to write a report definition and group definition, and how to submit JCL to store the
definitions and produce reports.

Report definition language guide

© Copyright IBM Corp. 1994, 2017 161

Getting started with the report definition language

About this task
Assume that you have collected data and stored it in a data table called DRL.RWSTAT. Table 39 on page
162 shows the contents of DRL.RWSTAT.

Table 39. Contents of DRL.RWSTAT data table

DATE HOUR R_ERR W_ERR TOT_ERR

2019-01-01 1 6 8 14

2019-01-01 2 7 4 11

2019-01-01 3 7 11 18

2019-01-01 4 6 11 17

2019-01-01 5 7 17 24

2019-01-01 6 8 6 14

You can use the report definition language to produce reports based on this data. You can create a tabular
report like the one shown in Figure 98 on page 162.

 Number of READ/WRITE errors
 for APPL1, APPL2, and APPL3

 Date: 2019-01-01

 TOT
 HOUR ERR
 ------ -----------
 1 14
 2 11
 3 18
 4 17
 5 24
 6 14

Figure 98. Tabular report produced from DRL.RWSTAT

You can also produce a graphic report like the one shown in Figure 99 on page 162.

Number of READ/WRITE errors
for APPL1, APPL2, and APPL3

Date: 2019-01-01

0

5

10

15

20

25

1 2 3 4 5 6

TOT
ERR

Figure 99. Graphic report produced from DRL.RWSTAT

Report definition language guide

162 IBM Z Decision Support : Language Guide and Reference

Creating a QMF query and form

About this task
To create reports from a data table, you must create a QMF query to access the data and, optionally, a
QMF form to define the format of the report. If you do not define a form, QMF will use a default form.

If you export the query and form to different data sets, you must allocate them according to the QMF
requirements for such objects.

You can access QMF to create queries and forms using the reporting dialog. For more information about
using the reporting dialog, refer to the Guide to Reporting. For more information about using QMF to create
queries and forms, refer to the Query Management Facility Learner's Guide.

Writing a group definition

About this task
Before you create the actual report definition, you must first determine whether the report will be part of
a group. In this example, the report is going to be part of a report group called ACCESS_ERRORS.

To create the group definition for the group called ACCESS_ERRORS, edit a new member of
DRL.LOCAL.DEFS called RSTATS and type the DEFINE GROUP statement shown in Figure 100 on page
163.

-- Define a report group called ACCESS_ERRORS
DEFINE GROUP ACCESS_ERRORS
 DESC 'Access errors for APPL1, APPL2, and APPL3';

Figure 100. Using the DEFINE GROUP statement

In Figure 100 on page 163, you specify a name and a description for the group. When you display this
group through the reporting dialog, the description you use on the DESC clause is displayed.

You assign a report to this group using the DEFINE REPORT statement.

Writing a report definition

About this task
Use the DEFINE REPORT statement to identify the query, form, and any options. To create the reports
shown in Figure 98 on page 162 and Figure 99 on page 162, you must create one report definition for a
tabular report and one for a graphic report.

Writing a definition for a tabular report

About this task
To create a definition for a tabular report, type the DEFINE REPORT statement shown in Figure 101 on
page 163 in DRL.LOCAL.DEFS(STATTAB).

-- Define tabular report for READ/WRITE errors from APPL1, APPL2, APPL3
DEFINE REPORT TAB_RPT
 DESC 'Table of RD/WR errors for APPL1, APPL2, APPL3'
 QUERY RWQUERY
 FORM RWFORM
 FILE RWTABOUT
 BATCH PRINT SAVE DAILY
 GROUPS ACCESS_ERRORS;

Figure 101. Using the DEFINE REPORT statement for a tabular report

Report definition language guide

Chapter 12. Report definition language guide 163

In Figure 101 on page 163, you define the report name as TAB_RPT and specify the QMF query and form
you created earlier. The query and form are imported into QMF when the statement is executed.

The FILE and BATCH clauses define batch processing options for the report. When the report is produced
in batch it will be printed, and then saved in the member RWTABOUT in the data set allocated to DRLREP.

Using the GROUPS clause, you assign this report to the report group called ACCESS_ERRORS.

Writing a definition for a graphic report

About this task
You can use the DEFINE REPORT statement to specify that the report be produced in chart format.

Type the DEFINE REPORT statement shown in Figure 102 on page 164 in a member of DRL.LOCAL.DEFS
called STATGRA to define a bar chart for this data.

-- Define bar chart for READ/WRITE errors from APPL1, APPL2, and APPL3
DEFINE REPORT CHART_RPT
 DESC 'Bar chart for RD/WR errors'
 QUERY RWQUERY
 FORM RWFORM
 FILE RWCHAOUT
 CHART BAR
 BATCH PRINT SAVE DAILY
 GROUPS ACCESS_ERRORS;

Figure 102. Using the DEFINE REPORT statement for a chart

Creating the report definition for a chart is similar to creating the report definition for a tabular report. You
specify the name of the report definition, CHART_RPT, and assign a description to the report definition.
You specify the CHART clause to identify the GDDM-ICU format used for this graphic report. (BAR is a
predefined QMF format; otherwise you would have to create a chart format.)

When the report is produced in batch it is printed and then saved in the member RWCHAOUT in the data
set allocated to ADMGDF.

Storing report definitions

About this task
After creating the group definition and the report definition, you can store these definitions in batch using
JCL.

Storing definitions in batch

About this task
Figure 103 on page 164 shows the JCL you can use to run jobs for storing group and report definitions.

//jobname JOB parameters
//RDEF EXEC PGM=IKJEFT01
//SYSPROC DD DISP=SHR,DSN=DRL190.SDRLEXEC
//DRLIN DD DISP=SHR,DSN=DRL.LOCAL.DEFS(RSTATS)
// DD DISP=SHR,DSN=DRL.LOCAL.DEFS(STATTAB)
// DD DISP=SHR,DSN=DRL.LOCAL.DEFS(STATGRA)
//DRLOUT DD SYSOUT=*
//DRLDEFS1 DD DISP=SHR,DSN=DRL.LOCAL.DEFS
//...
//... QMF and Db2 libraries
//...
//SYSTSIN DD *
%DRLERDEF SYSTEM=DSN SYSPREFIX=DRLSYS PREFIX=DRL MODE=BATCH QMF=YES

Figure 103. JCL for storing report definitions in batch

You may need to modify these parameters submitted with DRLERDEF:

Report definition language guide

164 IBM Z Decision Support : Language Guide and Reference

SYSTEM=DSN
The SYSTEM parameter specifies the name of the Db2 subsystem, which is DSN in Figure 103 on page
164.

SYSPREFIX=DRLSYS
The SYSPREFIX parameter specifies the prefix of the IBM Z Decision Support system tables, which is
DRLSYS in Figure 103 on page 164.

PREFIX=DRL
The PREFIX parameter specifies the prefix of all other tables, which is DRL in Figure 103 on page 164

SHOWSQL YES/NO
The SHOWSQL parameter specifies whether SQL statements should be shown (for debugging).

QMF=YES/NO
The QMF parameter specifies whether QMF is used, which is YES in Figure 103 on page 164

For more information about the parameters used in the JCL, see “Specifying JCL and parameters” on
page 186.

You can also store definitions from the reporting dialog. For more information about using the reporting
dialog, refer to the Guide to Reporting.

Generating reports

About this task
After report definitions are stored, you can use them to produce reports. You can produce reports from
the reporting dialog, or use JCL in batch. For more information about producing reports, refer to the Guide
to Reporting.

Report definition language elements
This chapter describes the elements that are common to Report definition language elements. It
describes how to code report definition language elements, and discusses variables and constants.

Input format
When you enter report definition language elements, you can enter them in any format you choose. You
need not begin elements at a particular column within your input data set. Instead, you can use any
column between 1 and 72.

For example, this DEFINE REPORT statement:

DEFINE REPORT NEW_REPORT
 DESC 'New report definition'
 QUERY SQLQUERY
 FORM QMFFORM
 BATCH PRINT DAILY
 GROUPS ALL_REPORTS;

can also be entered in this format:

DEFINE REPORT NEW_REPORT DESC 'New report definition'
 QUERY SQLQUERY FORM QMFFORM
 BATCH PRINT DAILY
 GROUPS ALL_REPORTS;

Identifiers
Identifiers are used as names or components of names. Identifiers can be either long or short.

Report definition language guide

Chapter 12. Report definition language guide 165

A long identifier is an identifier that has a maximum length of 18 bytes. If you use a delimited long
identifier, quotation marks are not included in the 18-byte length restriction unless they are part of the
name.

You can also use sequences of double-byte characters in long delimited identifiers. Each sequence must
begin with a shift-out character and end with a shift-in character. The shift-out and shift-in characters are
considered part of the identifier.

A short identifier has a maximum length of 8 bytes and must follow the MVS rules for member names.

Comments
A comment provides documentation within the report definition language. Comments can be:

• A sequence of characters starting with a double minus sign (--) and ending at the end of the line.

If you begin a comment with a double minus sign (--), the comment is ended at the end of a line. To
create multiple-line comments, you must specify double minus signs (--) at the beginning of each
comment line.

For example:

-- A comment line must be on one line only
-- But, you can have multiple-line comments

• A sequence of characters starting with slash asterisk (/*) and ending with asterisk slash (*/).

If you begin a comment with /*, the comment is not ended until a */ is encountered. Therefore, if you
want multiple-line comments, you begin a comment with /* and create lines of comments. At the end of
the last line of comments, you add */. For example:

/* This comment line stretches over more
than one line */

Character string constants
A character string constant is a sequence of characters that starts and ends with an apostrophe.

You can include double-byte characters in character string constants. Each string of double-byte
characters must be enclosed between shift-out and shift-in characters.

To include an apostrophe in a character string constant, use two consecutive apostrophes.

Examples of character string constants include:

’2019-5-15’

’32’

’DON’T CHANGE’

Report definition language statements
The report definition language consists of statements that you can use to write report definitions and to
write group definitions for sets of reports. You can also delete report and group definitions that you have
created and stored.

This section provides an alphabetical listing of the report definition language statements. For each
statement, this section describes:

• The purpose of the statement
• The syntax used for the statement
• Parameters (clauses and keywords) that you can specify for the statement
• Examples of how to use the statement

Report definition language guide

166 IBM Z Decision Support : Language Guide and Reference

For more information about how to read the syntax diagrams shown in this chapter, see Chapter 7, “How
to read the syntax diagrams,” on page 65.

DEFINE GROUP

Purpose
Use the DEFINE GROUP statement to assign an ID to a set of reports that you plan to create later. You can
also specify a group owner and a description for the group.

Note: You specify which reports are assigned to this group using the GROUPS clause of the DEFINE
REPORT statement.

Format

DEFINE GROUP group-identifier

.

VERSION string-constant

OWNER user-identifier

DESC 'text'

Parameters
group-identifier

Specifies a long identifier for the ID of this group of reports.
VERSION string-constant

The string specified by the string-constant is stored together with the definition, to identify the
statement that was used to create the definition. The string can be at most 18 bytes long. Omitted
VERSION means the same as specifying VERSION '.

OWNER user-identifier
Specifies a short identifier for the owner of the group. If you specify a group owner, only that owner
can view and modify the group of reports.

If you do not specify OWNER, the report group is public (it is accessible by all users).

DESC 'text'
Specifies a description to be used for this report group, where text can be any character string up to 50
characters long (characters over the 50-character maximum are truncated). You can include double-
byte character set (DBCS) characters in text.

The group description appears in the reporting dialog when the group definition is displayed.

Examples

Assume that you want to create a report group called CICS that will contain all reports produced from
CICS data. Use the DEFINE GROUP statement shown in Figure 104 on page 167.

DEFINE GROUP CICS
 DESC 'CICS Reports';

Figure 104. DEFINE GROUP statement

Report definition language guide

Chapter 12. Report definition language guide 167

DEFINE REPORT

Purpose
Use the DEFINE REPORT statement to create a report. You can specify how the report is generated and
identify the groups to which the report belongs.

Format

DEFINE REPORT long-identifier

.

VERSION string-constant

OWNER user-identifier

DESC 'text'

TYPE choice

BATCH

PRINT SAVE DAILY

WEEKLY

MONTHLY

QUERY query-name

FORM form-name

CHART format-name

FILE member-name

ATTRIBUTES

,

long-identifier

GROUPS

,

group-identifier

VARIABLES

,

variable

choice
def.QUERY TABDATA GRAPHDATA

variable
long-identifier

CHAR

NUMERIC

DATE

TIME

TIMESTAMP

REQUIRED DEFAULT 'text'

Report definition language guide

168 IBM Z Decision Support : Language Guide and Reference

Parameters
long-identifier

Specifies a long identifier as the ID of the report.
VERSION string-constant

The string specified by the string-constant is stored together with the definition, to identify the
statement that was used to create the definition. The string can be at most 18 bytes long. Omitted
VERSION means the same as specifying VERSION '.

OWNER user-identifier
Specifies a short identifier as the owner of the report. If you specify OWNER, only that owner can view
or modify the report. If you do not specify OWNER, the report is public (accessible by all users).

DESC 'text'
Specifies a description to be used for this report, where text can be any character string up to 50
characters long (characters over the 50-character maximum are truncated). You can include double-
byte character set (DBCS) characters in text.

The report description appears in the reporting dialog when the report definition is displayed.

TYPE
Specifies the kind of report, where TYPE can be:
QUERY

Specifies that the report is the displayed output of a QMF query. If you specify TYPE QUERY, you
must also specify the QUERY clause. The default TYPE is QUERY.

TABDATA
Specifies that the report is a saved tabular report. If you specify TYPE TABDATA, you must also
specify the FILE clause.

GRAPHDATA
Specifies that the report is a saved graphic report. If you specify TYPE GRAPHDATA, you must also
specify the FILE clause.

BATCH
Specifies that the report is produced in batch. If you specify the BATCH keyword, you must also
specify TYPE QUERY and the QUERY clause.

You can specify these options on the BATCH keyword:
PRINT

Specifies that the report is printed when produced in batch.
SAVE

Specifies that the report is saved in the member specified by the FILE option when the report is
produced in batch.

DAILY
Specifies that the report is produced daily.

WEEKLY
Specifies that the report is produced weekly.

MONTHLY
Specifies that the report is produced monthly.

QUERY query-name
Identifies the data set member that contains the QMF query used for the report, where query-name
must be a previously defined QMF query. This query will be imported into QMF when the statement is
executed.

FORM form-name
Identifies the data set member that contains the QMF form used for this report, where form-name
must be a previously defined QMF form. This form is imported into QMF when the statement is
executed.

Report definition language guide

Chapter 12. Report definition language guide 169

CHART format-name
Specifies that the report is a graphic report, where format-name is the name of the GDDM-ICU format
used for this chart.

Note: If you do not specify the CHART clause, a tabular report is assumed.

FILE member-name
Specifies the member that a saved report is retrieved from. It is also used by batch reporting for
saving the report. (member-name must be a short identifier.)

ATTRIBUTES long-identifier, ...
Identifies the attributes of the report. When you display reports using the reporting dialog, you can
display all the reports that have the same attribute.

GROUPS group-identifier, ...
Specifies the group or groups to which this report belongs, where group-identifier is a long identifier
that corresponds to a previously defined group.

VARIABLES long-identifier, ...
Specifies variables (besides the variables defined in the QMF query) that must be supplied before the
report is produced. (The maximum length for the variables is 17.) If the report will be produced online
from the reporting dialog, the dialog prompts you to provide these variables. If the report is produced
in batch, you must include these variables in the job used to produce the report.

Variables are also extracted from the query, so this clause is optional if you do not want special checks
or functions.

For each variable, you can specify these parameters:
CHAR|NUMERIC|DATE|TIME|TIMESTAMP

Specifies the data type of the variable.
REQUIRED

Specifies that the variable is required. You must specify a value for this variable before the report
is produced.

DEFAULT 'text'
Specifies a default value for the variable, where text can be up to 40 characters.

Examples

Assume that you have created (and exported) a QMF query called DRLQCIEX and a QMF form called
DRLFCIEX. You want to create a report that uses this query and form. It will have attributes of CICS,
PERFORMANCE, and EXCEPTION. It will also belong to groups CICS and MGMT.

To write a report definition based on this information, use the DEFINE REPORT statement shown in Figure
105 on page 170.

DEFINE REPORT CICS_EXC
 DESC 'CICS Exceptions'
 QUERY DRLQCIEX
 FORM DRLFCIEX
 ATTRIBUTES CICS, PERFORMANCE, EXCEPTION
 GROUPS CICS, MGMT;

Figure 105. DEFINE REPORT statement

DROP GROUP

Purpose
Use the DROP GROUP statement to delete a report group definition that you have previously created.

Format
The syntax of the DROP GROUP statement is:

Report definition language guide

170 IBM Z Decision Support : Language Guide and Reference

DROP GROUP group-identifier

OWNER user-identifier

Parameters
You can specify these parameters for the DROP GROUP statement:
group-identifier

Specifies the name of the group that you want to drop.
OWNER user-identifier

Identifies the owner of the group that you want to drop. If you drop a public group (a group accessible
by all users), you need not specify the OWNER clause.

Examples

Assume that you created and stored a report group named CICS. To delete this group definition, use the
DROP GROUP statement shown in Figure 106 on page 171.

DROP GROUP CICS;

Figure 106. DROP GROUP statement

DROP REPORT

Format

Use the DROP REPORT statement to delete a report definition that you previously created and stored.

The syntax of the DROP REPORT statement is:

DROP REPORT long-identifier

OWNER user-identifier

Parameters
You can specify these parameters with the DROP REPORT statement:
long-identifier

Specifies the name of the report that you want to drop.
OWNER user-identifier

Specifies the owner of the report that you want to drop. If you drop a public report (a report that is
accessible to all users), you need not specify the OWNER clause.

Examples

Assume that your user identifier is USER1 and you have a private report called USER_EXC that you want
to delete. To delete this report, use the DROP REPORT statement shown in Figure 107 on page 171.

DROP REPORT USER_EXC OWNER USER1;

Figure 107. DROP REPORT statement

Report definition language guide

Chapter 12. Report definition language guide 171

Report definition language guide

172 IBM Z Decision Support : Language Guide and Reference

Chapter 13. Log and record procedures

This section contains product-sensitive programming interface and associated guidance information.

Although the log collector provides extensive processing capabilities, you might decide to create your own
procedures to process data before it is processed using the stored definitions.

In particular, you must use own procedures to:

• Process data in unusual formats.
• Cross-reference data between parallel repeated sections and between records.

Write these procedures in assembler or C. There are two types of procedure:
Log procedures

Invoked for all records read from the log data set.
Record procedures

Invoked only for the type of records you specify.

Figure 108 on page 173 shows an example of the processing that occurs when you use log and record
procedures.

Figure 108. Processing for log and record procedures

As shown in the figure, the log procedure LOGPGM processes each record from the log data set and
produces three internal records of types RTYPE1, RTYPE2, and RTYPE3, respectively. Each of these
record types must be defined to the log collector by means of a DEFINE RECORD statement, and can be
specified as the source of a DEFINE UPDATE statement. In the example, each of the three record types is
so specified, and the data from each of them is used to update the data tables. (Note that the procedure is
not limited to producing only one internal record of each type; there can be any number within each type.)

An internal record produced by one procedure may be used as input to another record procedure. In the
example of Figure 108 on page 173, the internal records of type RTYPE1, besides being used in an
update, are processed by a record procedure RPROC1. This procedure produces internal records of type
RTYPE4. Again, this record type must be defined by means of a DEFINE RECORD statement, and the data
from the record are used to update the data tables via an update definition.

In a similar way, internal records of type RTYPE3 are processed by a record procedure RPROC2 that
produces internal records of type RTYPE5.

This scheme may be made as complex as needed; however, the output of a record procedure must not be
used, directly or indirectly, as input to the same procedure.

Log and record procedures

© Copyright IBM Corp. 1994, 2017 173

Specifying log and record procedures

About this task
You must define your log and record procedures to the log collector using the log collector language. To
define a log procedure, use the LOGPROC clause of the DEFINE LOG statement. This is an example of a
log procedure definition:

DEFINE LOG TST_LOG
 LOGPROC LOGPGM
 LANGUAGE ASM;

Figure 109. Defining a log procedure

The log procedure LOGPGM is called for every record that occurs in a log of type TST_LOG. LOGPGM is a
program written in assembler.

To define a record procedure, use the DEFINE RECORDPROC statement. This is an example of a record
procedure definition:

DEFINE RECORDPROC RPROC1
 FOR RTYPE1
 LANGUAGE C;

Figure 110. Defining a record procedure

The record procedure RPROC1 is called for every record of type RTYPE1. RPROC1 is a program written in
C. You must define the record type RTYPE1 before you execute this DEFINE RECORDPROC statement.

When you run the log collector, you must ensure that load modules LOGPGM and RPROC1 containing the
specified procedures are present in an accessible load library.

Calling log and record procedures

About this task
Before the log collector begins processing a log data set, it passes control to each of the defined log and
record procedures. The procedure does not read data at this time and no output records are generated.
Instead, the procedure performs any required initialization, such as buffer and work area allocation. The
procedure can return the address of the work area in a parameter. Then, each time the procedure is
called, the log collector passes this address to it.

When the log collector processes the log, it calls the log procedure for each record from the log, and the
record procedure for each record of the type specified in the DEFINE RECORDPROC statement. The
procedure processes the record and passes a return code back to the log collector.

The return code indicates how many records were produced by the procedure. If the procedure did not
produce output records, the log collector continues processing the next input record. If the procedure
produced one output record, it returns a pointer to it. The log collector processes the output record, and
continues with the next input record. If the procedure produced more than one output record, it returns a
pointer to the first of them. The log collector processes the output record, and calls the procedure again
with the same input. The procedure returns then a pointer to the next output record. This is repeated until
the procedure indicates that there are no more output records.

The log or record procedures can determine that the input record is not valid. In which case, the log
collector writes information to the DRLDUMP file. The procedure can also immediately terminate
processing.

The log collector calls each log procedure and record procedure each time after committing the database
updates.

Log and record procedures

174 IBM Z Decision Support : Language Guide and Reference

After processing all records, the log collector calls the procedure again to perform any required
termination tasks (such as freeing work areas). This step occurs even if the procedure specified that
processing terminate immediately. During this last call to the procedure, no input records are provided.
But the procedure can generate one or more output records.

If you specified a PARM expression in your DEFINE LOG or DEFINE RECORDPROC statement, the
procedure receives the value of that expression as a parameter every time it is called. For example, the
log procedure LOGPGM defined by this statement receives the string that is the current value of the
variable UPDT_EXP:

DEFINE LOG TST_LOG
 LOGPROC LOGPGM
 PARM :UPDT_EXP;

Figure 111. Supplying a parameter using the PARM option

Notice that the PARM expression is evaluated only once, before the first call to the procedure. The
resulting value is then passed to the procedure on all calls.

A log or record procedure may contain SQL calls. A procedure containing SQL calls must be precompiled,
and the DBRM must be bound together with the log collector DBRM.

Calling assembler procedures

About this task
The call to a procedure written in assembler follows the standard linkage conventions of System/390:

• R15 contains the entry address.
• R14 contains the return address.
• R13 points to a 72-byte save area.
• R1 points to a parameter list.

The procedure is invoked in 31-bit mode. Before the procedure returns control, it must perform all
administrative tasks, such as restoring registers.

You can choose between two alternative interfaces to the procedure, each using a different parameter list.
You choose the interface by specifying LANGUAGE ASM or LANGUAGE ASML on your DEFINE LOG or
DEFINE LOGPROC statement.

Using LANGUAGE ASM interface
The parameter list for a log or record procedure using the interface specified as LANGUAGE ASM has this
layout:

PARMLIST DSECT
RESERVED DS A Not used by the procedure
P_CALL_TYPE DS A Address of CALL_TYPE
P_RETURN_CODE DS A Address of RETURN_CODE
PP_IN_RECORD DS A Address of P_IN_RECORD
PP_OUT_RECORD DS A Address of P_OUT_RECORD
PP_WORK_AREA DS A Address of P_WORK_AREA
PP_PARM DS A Address of P_PARM

CALL_TYPE
A fullword. Indicates the type of call. It can have one of these values:
0

First call
1

Normal call

Log and record procedures

Chapter 13. Log and record procedures 175

2
Last call

3
Commit call.

RETURN_CODE
A fullword. Receives the return code from the procedure. The return code can have one of these
values:
0

No record has been built.
1

A record has been built, and there is no more output for this input.
2

A record has been built, and there are more output records for this input.
3

No record has been built because the input record is not correct.
4

No record has been built and processing should end immediately.

The values of return code expected from different call types are shown in Table 40 on page 179.

P_IN_RECORD
A fullword containing a pointer to the input record. The pointer is supplied only on those call types
that receive an input record. Otherwise it is 0.

The procedure must not modify the input record or the pointer to it.

P_OUT_RECORD
A fullword. Receives a pointer to the output record built by the procedure. The log collector uses this
pointer only if return code indicates that a record has been built.

The value of P_OUT_RECORD on entry to the procedure is undefined. It is normally not the same as set
by the preceding call to the procedure.

The first two bytes of the output record must contain the length of the record as an unsigned binary
integer. The length includes these two bytes.

P_WORK_AREA
A fullword. Provides a way for preserving information between the consecutive calls to the procedure.
The value placed in P_WORK_AREA by the first call is supplied there on all subsequent calls to the
procedure. You will normally use it as a pointer to a work area that contains all data that you want to
preserve between the calls.

P_PARM
A fullword. Contains a pointer to the result of the expression specified using the PARM option. The
format of the result depends on data type of the expression, and may be an integer, an 8-byte
floating-point number, or a character string preceded by a two-byte length field. (The designer of the
procedure must know what format to expect and how to interpret the value.)

If the result of PARM expression is null, the value passed to the procedure is a zero or an empty string,
depending on data type of the expression. If PARM was not specified for the procedure, P_PARM is 0.

Table 40 on page 179 summarizes the use of parameters in different types of calls.

Using LANGUAGE ASML interface
The interface specified as LANGUAGE ASML differs from that specified as LANGUAGE ASM by the method
of returning the length of the output record. Instead of the length being returned in a field within the
record, it is returned in a separate parameter. Another difference is the absence of RESERVED as the first
parameter. The parameter list has this layout:

Log and record procedures

176 IBM Z Decision Support : Language Guide and Reference

PARMLIST DSECT
P_CALL_TYPE DS A Address of CALL_TYPE
P_RETURN_CODE DS A Address of RETURN_CODE
PP_IN_RECORD DS A Address of P_IN_RECORD
PP_OUT_RECORD DS A Address of P_OUT_RECORD
P_OUT_LENGTH DS A Address of OUT_LENGTH
PP_WORK_AREA DS A Address of P_WORK_AREA
PP_PARM DS A Address of P_PARM

OUT_LENGTH
A fullword. Receives length of the output record.

Other parameters are the same as for the ASM interface. Notice the absence of RESERVED.

Calling C procedures
The procedures written in C require Version 2 of C/370 and are run using a persistent C environment
(HOTC). The environment is established before the initial call to the procedure and terminated after the
last call. The environment is implemented by modules EDCXHOTL, EDCXHOTU, and EDCXHOTT. These
modules are a part of C/370 and are not supplied with IBM Z Decision Support. To execute procedures
written in C, you must link edit these modules with the IBM Z Decision Support module DRL2CTOP.

Figure 112 on page 177 shows sample JCL that you can use to link edit DRL2CTOP. (See also DRLJCLNK
in DRL190.SDRLCNTL.) Check the names of C/370 libraries on your installation. If they are not
EDC.V2R1M0.SEDCSPC and EDC.V2R1M0.SEDCBASE, use your names instead.

//jobname JOB parameters
//LKED EXEC PGM=IEWL,
// PARM='DCBS,MAP,LIST,LET,TEST,RENT,XREF,REUS,RMODE(ANY),AMODE(31)'
//SYSLIB DD DISP=SHR,DSN=EDC.V2R1M0.SEDCSPC
// DD DISP=SHR,DSN=EDC.V2R1M0.SEDCBASE
//SYSLMOD DD DISP=OLD,DSN=DRL190.SDRLLOAD
//DD1 DD DISP=SHR,DSN=DRL190.ADRLLOAD
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,DISP=(NEW,DELETE),
// SPACE(32000,(30,30))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 INCLUDE DD1(DRLPCIBM)
 INCLUDE SYSLMOD(DRL2CTOP)
 INCLUDE DD1(DRLPXPRO)
 INCLUDE DD1(DRLPXEPI)
 ENTRY DRL2CTOP
 NAME DRL2CTOP(R)

Figure 112. Sample JCL for linking the DRL2CTOP module

The persistent C environment requires that you specify the size of the stack to be used by the C
procedures. (The size of the stack is passed as a parameter to initialization routine EDCXHOTC. Refer to
IBM C/370 Programming Guide for more information.)

The log collector specifies for you the stack size of 4 096 bytes. You can request a different stack size
using the log collector variable CSTACK. The value of the variable specifies the size of the stack in bytes or
Kbytes, like this:

SET CSTACK ='8192';
SET CSTACK ='2K';

The first SET statement specifies a stack of 8 192 bytes. The second specifies a stack of 2 048 bytes. The
log collector does not check the value that you specify. Specifying a value that is too large may cause an
unpredictable result. The stack is always allocated above the 16MB line.

Using LANGUAGE C interface
A log or record procedure written in C must conform to this declaration:

Log and record procedures

Chapter 13. Log and record procedures 177

 #pragma linkage(name,OS)

 void name(int reserved,
 int call_type,
 int return_code,
 in_record **p_in_record,
 out_record **p_out_record,
 work_area **p_work_area,
 parm_type **p_parm)

name
The name of the procedure, as specified by the DEFINE LOG or DEFINE RECORDPROC statement.

reserved
This parameter is not used by the procedure.

call_type
Indicates the type of call. It can have one of these values:
0

First call
1

Normal call
2

Last call
3

Commit call.
return_code

Receives the return code from the procedure. The return code can have one of these values:
0

No record has been built.
1

A record has been built, and there is no more output for this input.
2

A record has been built, and there are more output records for this input.
3

No record has been built because the input record is not correct.
4

No record has been built and processing should end immediately.

The values of return code expected from different call types are shown in Table 40 on page 179.

*p_in_record
A pointer to the input record. It is supplied only on those call types that receive an input record.
Otherwise it is null.

in_record
A structure representing the layout of the input record. The procedure must not modify the input
record or the pointer to it.

*p_out_record
Receives a pointer to the output record built by the procedure. The log collector uses this pointer only
if return code indicates that a record has been built.

The value of *p_out_record on entry to the procedure is undefined. It is normally not the same as
set by the preceding call to the procedure.

out_record
A structure representing the layout of the output record. This layout must be independently defined to
the log collector by means of a DEFINE RECORD statement.

Log and record procedures

178 IBM Z Decision Support : Language Guide and Reference

The first two bytes of the record must contain the length of the record in the form of an unsigned short
integer.

*p_work_area
Provides a way for preserving information between the consecutive calls to the procedure. The value
returned in this parameter by the first call is supplied in this parameter on all subsequent calls to the
procedure. You will normally use it as a pointer to a work area that contains all data that you want to
preserve between the calls.

work_area
A structure containing the data that you want to preserve between the calls to the procedure.

*p_parm
A pointer to the result of the expression specified by the PARM option.

parm_type
Data type of the result of PARM expression. It depends on data type of the expression, and may be an
integer, a floating-point number, or a character string preceded by a two-byte length. Depending on
what is expected, parm_type should be one of these:

int
double
struct
 {
 short lgth;
 char parm[n];
 }

where n is not less than the maximum expected length of the string. (The designer of the procedure
must know what type to expect and how to interpret the value.)

If the result of PARM expression is null, the value passed to the procedure is a zero or an empty string,
depending on the type of the expression. If PARM was not specified for the procedure, p_parm is null.

Table 40 on page 179 summarizes the use of parameters in different types of calls.

Table 40. Input and output of log and record procedures

Input Output

CALL_TYP
E ;call_t

ype

P_IN_RECO
RD ;*p_in_r

ecord

P_WORK_AR
EA ;*p_work

_area

P_PARM ;*
p_parm

RETURN_CO
DE ;return
_code

P_OUT_RECO
RD ;*p_out_
record

OUT_LENG
TH ;(ASML

only)

P_WORK_AR
EA ;*p_work

_area

0 ;(first) null null &parm or
null

0 not used not used &work_area

4 not used not used &work_area

1 ;
(normal)

&in_record &work_area &parm or
null

0 not used not used &work_area

1 &out_record out length &work_area

2 &out_record out length &work_area

3 not used not used &work_area

4 not used not used &work_area

2 ;(last) null &work_area &parm or
null

0 not used not used &work_area

1 &out_record out length &work_area

2 &out_record out length &work_area

3 ;
(commit)

null &work_area &parm or
null

0 not used not used &work_area

4 not used not used &work_area

Log and record procedures

Chapter 13. Log and record procedures 179

Example log procedures
Suppose you want to process a log XMP where each record contains a date in the format exemplified by
14MAR00. This date format is not supported by the log collector. You might define the three parts of the
date as three fields in CHAR format, use the facilities of the log collector language to build from them a
date string 00-03-14, and then convert that string to date using the DATE function. You would have to do
this in every update definition that uses the date. If you have many such update definitions, it may be
simpler to convert the date using a log procedure.

An example of a log procedure that you might write to perform this conversion is shown in “Example C log
procedure” on page 180. An Assembler version of the same procedure is shown in “Example Assembler
log procedure” on page 182.

In order to illustrate the use of the parameter specified via PARM clause, the example assumes that the
month part of the date in the input record may sometimes be missing or invalid. In such a case, you want
to replace it by a default supplied by means of PARM.

DEFINE LOG XMP
 LOGPROC XMPPROC
 LANGUAGE C
 PARM :DEF_MONTH;

The default month is supplied via the variable DEF_MONTH that must be set every time you work with the
log XMP. The value of the variable should be a two-digit string from 01 through 12.

The input record from the log data set is represented in the procedure by the structure in_record. The
first seven bytes contain date as described above, and the next six bytes contain a transaction count
represented as an external integer.

The structure out_record represents a record built by the procedure. The record starts with a two-byte
length field, followed by the converted date in the format DATE(YYMMDD), followed by a copy of
transaction count from the input record. You define this record to the log collector like this:

DEFINE RECORD XMP_REC
 IN LOG XMP
 FIELDS
 (RECLEN OFFSET 0 LENGTH 2 BINARY,
 DATE OFFSET 2 LENGTH 6 DATE(YYMMDD),
 TRANS_COUNT OFFSET 8 LENGTH 6 EXTERNAL INTEGER);

You cannot build the output record in a variable that is local to your procedure, because it must be
accessible to the log collector after a return from the procedure. So, the first call to the procedure must
allocate a buffer for the output record that will remain allocated until it is freed by the last call.

The output buffer is placed in a data area that is allocated by the first call and freed by the last call. The
layout of this area is represented by the structure work_area. In this example, the work area contains
only the output buffer. In general, you include there all information that you need to store between the
calls to the procedure.

Other details of the procedure are explained by comments.

Example C log procedure
This section shows an example C log procedure. An Assembler version of the same procedure is shown in
“Example Assembler log procedure” on page 182.

 /*==*/
 /* Example of a log procedure written in C */
 /*==*/
 #pragma linkage(XmpProc,OS)

 #include <stdio.h>
 #include <stdlib.h>

 typedef struct /* Input record */
 { char day[2]; /* Day, DD */
 char month[3]; /* Month, MMM */

Log and record procedures

180 IBM Z Decision Support : Language Guide and Reference

 char year[2]; /* Year, YY */
 char trans_count[6]; /* Transaction count */
 } in_record;

 typedef struct /* Output record */
 { short lgth; /* Length */
 char year[2]; /* Year, YY */
 char month[2]; /* Month, MM */
 char day[2]; /* Day, DD */
 char trans_count[6]; /* Transaction count */
 } out_record;

 typedef struct /* Work area */
 { out_record out_buffer; /* Buffer for output record */
 } work_area;

 typedef struct /* Parm string */
 { short lgth; /* Length */
 char parm[2]; /* Default month, MM */
 } parm_string;

 /*--*/
 /* Start of procedure */
 /*--*/
 void XmpProc
 (int reserved,
 int call_type,
 int return_code,
 in_record **p_in_record,
 out_record **p_out_record,
 work_area **p_work_area,
 parm_string **p_parm)

 {
 /*--*/
 /* Local variables */
 /*--*/
 in_record *pi; /* Local ptr to input record */
 work_area *pw; /* Local ptr to work area */
 parm_string *pp; /* Local ptr to parm string */
 int m; /* Index in month table */
 char *month_in[12] = /* Month codes in */
 {
 "JAN","FEB","MAR","APR","MAY","JUN",
 "JUL","AUG","SEP","OCT","NOV","DEC"
 };
 char *month_out[12] = /* Month codes out */
 {
 "01","02","03","04","05","06",
 "07","08","09","10","11","12"
 };
 switch (call_type)
 {
 /*--*/
 /* First call */
 /*--*/
 case (0):

 /* Allocate work area. */
 pw = (work_area *)malloc(sizeof(work_area));

 /* Set output record length. */
 pw->out_buffer.lgth = sizeof(out_record);

 /* Save work area ptr and return indicating success. */
 *p_work_area = pw;
 return_code = 0;
 break;

 /*--*/
 /* Normal call */
 /*--*/
 case (1):

 /* Set local pointer to input record. */
 /* Set local pointer to parm value. */
 /* Retrieve pointer to work area. */
 pi = *p_in_record;
 pp = *p_parm;
 pw = *p_work_area;

 /* Copy year, day, and transaction count to output record. */

Log and record procedures

Chapter 13. Log and record procedures 181

 /* Set month to default. */
 strncpy(pw->out_buffer.year,pi->year,2);
 strncpy(pw->out_buffer.month,pp->parm,2);
 strncpy(pw->out_buffer.day,pi->day,2);
 strncpy(pw->out_buffer.trans_count,pi->trans_count,6);

 /* Find the three-letter month code in the table. */
 /* If found, set corresponding month number in output record. */
 for (m=0; m<12; m++)
 {
 if (strncmp(month_in[m],pi->month,3)==0)
 {
 strncpy(pw->out_buffer.month,month_out[m],2);
 break;
 }
 }

 /* Return pointer to output record and indicate 1 record built. */
 *p_out_record = &(pw->out_buffer);
 return_code = 1;
 break;

 /*--*/
 /* Last call */
 /*--*/
 case (2):

 /* Free work area. */
 free(*p_work_area);

 /* Return indicating no record built. */
 return_code = 0;
 break;

 /*--*/
 /* Commit call */
 /*--*/
 case (3):

 /* No action: indicate success. */
 return_code = 0;
 break;

 /*--*/
 /* Invalid call type */
 /*--*/
 default:

 /* Request termination. */
 return_code = 4;
 break;
 }
 }

Example Assembler log procedure
This section shows an Assembler version of the C log procedure shown in “Example C log procedure” on
page 180.

 *==
 * Example of a log procedure written in assembler (ASM interface)
 *==
 *--
 * Standard prologue
 *--
 XMPPROC CSECT ,
 XMPPROC AMODE 31
 XMPPROC RMODE ANY
 DS 0H
 USING *,R15
 B PROLOG Branch around identification.
 DC AL1(16)
 DC C'XMPPROC 95.150' Standard module identification
 DROP R15
 PROLOG STM R14,R12,12(R13) Save registers.
 LR R12,R15 Set R12 as base for the module.
 USING XMPPROC,R12 Use R12 as base.
 *
 SR R15,R15 | Get dynamic storage

Log and record procedures

182 IBM Z Decision Support : Language Guide and Reference

 LA R0,DYNSIZE | for the module.
 GETMAIN RU,LV=(0),SP=(15) | Address to R1.
 *
 LR R15,R13 |
 LR R13,R1 | Link save areas.
 USING DYNSTOR,R13 | Use R13 as base
 ST R15,4(,R13) | for dynamic storage.
 ST R13,8(,R15) |
 *
 L P_LIST,24(R15) Retrieve parameter list address
 USING PARMLIST,P_LIST Use it to address parameter list
 *
 USING IN_RECORD,PI Use PI to address IN_RECORD
 USING WORK_AREA,PW Use PW to address WORK_AREA
 USING OUT_RECORD,PW Record buffer is first in WORK_AREA
 USING PARM_STRING,PP Use PP to address PARM_STRING
 *--
 * Branch according to call type
 *--
 L R1,P_CALL_TYPE R1 = addr of CALL_TYPE
 L R1,0(,R1) R1 = CALL_TYPE
 BM INVALID_CALL If CALL_TYPE<0
 LA R0,3
 CR R1,R0
 BH INVALID_CALL If CALL_TYPE>3
 SLL R1,2 R1 = CALL_TYPE * 4
 B BRANCH_TABLE(R1) Branch according to CALL_TYPE
 *
 BRANCH_TABLE DS 0H
 B FIRST_CALL
 B NORMAL_CALL
 B LAST_CALL
 B COMMIT_CALL

 *--
 * First call
 *--
 FIRST_CALL DS 0H
 *
 * Allocate work area
 *
 SR R15,R15 | Get storage
 LA R0,WORKSIZE | for work area.
 GETMAIN RU,LV=(0),SP=(15) | Address to R1.
 *
 LR PW,R1 PW = address of work area.
 *
 * Set output record length
 *
 LA R0,OUTSIZE
 STH R0,OUT_LGTH OUT_LGTH = length of OUT_RECORD
 *
 * Save work area address and return indicating success
 *
 L R1,PP_WORK_AREA
 ST PW,0(,R1) P_WORK_AREA = PW
 SR R0,R0
 L R1,P_RETURN_CODE
 ST R0,0(,R1) RETURN_CODE = 0
 B EPILOG
 *--
 * Normal call
 *--
 NORMAL_CALL DS 0H
 *
 * Set local pointer to input record.
 * Set local pointer to parm value.
 * Retrieve pointer to work area.
 *
 L R1,PP_IN_RECORD
 L PI,0(,R1) PI = address of IN_RECORD
 L R1,PP_PARM
 L PP,0(,R1) PP = address of PARM_STRING
 L R1,PP_WORK_AREA
 L PW,0(,R1) PW = address of WORK_AREA
 *
 * Copy year, day and transaction count to output record.
 * Set month to default.
 *
 MVC OUT_YEAR,IN_YEAR
 MVC OUT_MONTH,PARM
 MVC OUT_DAY,IN_DAY

Log and record procedures

Chapter 13. Log and record procedures 183

 MVC OUT_TRANS_COUNT,IN_TRANS_COUNT *
 * Find the three-letter month code in table.
 * If found, set corresponding month number in output record.
 *
 LA M,1 M = 1
 *
 LOOP LR R1,M R1 = M
 SLL R1,2 R1 = M * 4
 LA R1,MONTHS-4(R1) R1 = address of MONTHS(M)
 CLC 0(3,R1),IN_MONTH
 BE FOUND If MONTH(M)=IN_MONTH
 LA M,1(,M) M = M + 1
 LA R2,12
 CR M,R2
 BNH LOOP If M<=12
 B READY If M>12
 *
 FOUND LR R1,M R1 = M
 SLL R1,1 R1 = M * 2
 LA R1,DEC_M-2(R1) R1 = address of DEC_M(M)
 MVC OUT_MONTH,0(R1) OUT_MONTH = DEC_M(M)
 *
 * Return pointer to output record and indicate one record built.
 *
 READY EQU *
 L R1,PP_OUT_RECORD
 ST PW,0(,R1) P_OUT_RECORD = PW
 LA R0,1
 L R1,P_RETURN_CODE
 ST R0,0(,R1) RETURN_CODE = 1
 B EPILOG
 *--
 * Last call
 *--
 LAST_CALL DS 0H
 *
 * Free work area
 *
 L R1,PP_WORK_AREA
 L R1,0(,R1) R1 = address of WORK_AREA
 LA R15,0
 LA R0,WORKSIZE R0 = length of WORK_AREA
 FREEMAIN RU,LV=(0),A=(1),SP=(15)
 *
 * Return code indicating no record built
 *
 SR R0,R0
 L R1,P_RETURN_CODE
 ST R0,0(,R1) RETURN_CODE = 0
 B EPILOG
 *--
 * Commit call
 *--
 COMMIT_CALL DS 0H
 *
 * No action: indicate success.
 *
 SR R0,R0
 L R1,P_RETURN_CODE
 ST R0,0(,R1) RETURN_CODE = 0
 B EPILOG

 *--
 * Invalid call type
 *--
 INVALID_CALL DS 0H
 *
 * Request termination.
 *
 LA R0,4
 L R1,P_RETURN_CODE
 ST R0,0(,R1) RETURN_CODE = 4
 B EPILOG
 *--
 * Standard epilogue
 *--
 EPILOG DS 0H
 LR R1,R13 | R1 = address of dynamic storage
 L R13,4(,R13) | Restore R13 from save area
 *
 LA R15,0 | Free dynamic storage
 LA R0,DYNSIZE

Log and record procedures

184 IBM Z Decision Support : Language Guide and Reference

 FREEMAIN RU,LV=(0),A=(1),SP=(15)
 *
 LM R14,R12,12(R13) Restore registers
 BR R14 Return to caller
 *--
 * Table of three-letter month codes
 *--
 MONTHS DC CL4'JAN'
 DC CL4'FEB'
 DC CL4'MAR'
 DC CL4'APR'
 DC CL4'MAY'
 DC CL4'JUN'
 DC CL4'JUL'
 DC CL4'AUG'
 DC CL4'SEP'
 DC CL4'OCT'
 DC CL4'NOV'
 DC CL4'DEC'
 *--
 * Table of month numbers
 *--
 DEC_M DC CL2'01'
 DC CL2'02'
 DC CL2'03'
 DC CL2'04'
 DC CL2'05'
 DC CL2'06'
 DC CL2'07'
 DC CL2'08'
 DC CL2'09'
 DC CL2'10'
 DC CL2'11'
 DC CL2'12'

 *--
 * Dynamic storage for the module
 *--
 DYNSTOR DSECT
 DS 18F Save area
 DS 0D
 DYNSIZE EQU *-DYNSTOR
 *
 *--
 * Parameter list
 *--
 PARMLIST DSECT
 RESERVED DS A Not used by the procedure
 P_CALL_TYPE DS A Address of CALL_TYPE
 P_RETURN_CODE DS A Address of RETURN_CODE
 PP_IN_RECORD DS A Address of P_IN_RECORD
 PP_OUT_RECORD DS A Address of P_OUT_RECORD
 PP_WORK_AREA DS A Address of P_WORK_AREA
 PP_PARM DS A Address of P_PARM
 *
 *--
 * Input record
 *--
 IN_RECORD DSECT
 IN_DAY DS CL2 Day, DD
 IN_MONTH DS CL3 Month, MMM
 IN_YEAR DS CL2 Year, YY
 IN_TRANS_COUNT DS CL6 Transaction count
 *
 *--
 * Output record
 *--
 OUT_RECORD DSECT
 OUT_LGTH DS H Length
 OUT_YEAR DS CL2 Year, YY
 OUT_MONTH DS CL2 Month, MM
 OUT_DAY DS CL2 Day, DD
 OUT_TRANS_COUNT DS CL6 Transaction count
 OUTSIZE EQU *-OUT_RECORD
 *--
 * Work area
 *--
 WORK_AREA DSECT
 OUT_BUFFER DS CL14 Buffer for output record
 DS 0D Doubleword alignment
 WORKSIZE EQU *-WORK_AREA
 *--

Log and record procedures

Chapter 13. Log and record procedures 185

 * Result of PARM expression
 *--
 PARM_STRING DSECT
 PARM_LGTH DS H Length
 PARM DS CL2 Parameter string

 *--
 * Registers
 *--
 R0 EQU 0
 R1 EQU 1
 R2 EQU 2
 R3 EQU 3
 R4 EQU 4
 R5 EQU 5
 R6 EQU 6
 R7 EQU 7
 R8 EQU 8
 R9 EQU 9
 R10 EQU 10
 R11 EQU 11
 R12 EQU 12
 R13 EQU 13
 R14 EQU 14
 R15 EQU 15
 *
 P_LIST EQU R7 Pointer to parameter list
 PI EQU R8 Local pointer to input record
 PW EQU R9 Local pointer to work area
 PP EQU R10 Local pointer to parm string
 M EQU R11 Month number
 END

Specifying JCL and parameters
When you use JCL to submit batch jobs for either the log collector language or the report definition
language, you can specify a number of different parameters based on your installation. This section
describes the parameters that you can specify.

JCL for the log collector language
Figure 113 on page 186 shows sample JCL that you can use when running the log collector in batch. (See
also DRLJCOLL in DRL190.SDRLCNTL.)

//jobname JOB parameters
//LC EXEC PGM=DRLPLC,PARM=('SYSPREFIX=DRLSYS SYSTEM=DSN'),
// REGION=1M
//STEPLIB DD DISP=SHR,DSN=DRL190.SDRLLOAD
//DRLIN DD *
 COLLECT ERR_EXMP;
//DRLLOG DD DISP=SHR,DSN=ABC.ERROR.EXAMPLE
//DRLOUT DD SYSOUT=*
//DRLDUMP DD SYSOUT=*

Figure 113. Sample JCL for the log collector

You use the PARM= parameter to define log collector variables. The string supplied with PARM=consists
of one or more variable definitions separated by blanks or commas. A variable definition has one of these
forms:

variable-name=string
&variable-name=string

It creates a variable named variable-name with a value string. The variable-name must be an identifier
and string can be any character string. If string contains blanks or commas, it must be enclosed in
quotation marks (").

For information about how variables are used, see “Using variables to modify your text” on page 72 and
“Obtaining the value of a variable” on page 76.

These four variables have a special meaning to the log collector

Log and record procedures

186 IBM Z Decision Support : Language Guide and Reference

SYSTEM
Specifies the name of the Db2 subsystem that manages the tables that make up the IBM Z Decision
Support database. If you do not define this variable, it is defined by default with the value DSN.

PLAN
Specifies the name of the Db2 application plan as defined in the bind job for IBM Z Decision Support.
If you do not define this variable, it is defined by default with the value DRLPLAN.

SYSPREFIX
Specifies the prefix of system table names. If you do not define this variable, it is defined by default
with the value DRLSYS.

SHOWINPUT
By defining this variable with value NO, you suppress copying of log collector statements to the
DRLOUT file. But, keep in mind that you may then have problems in interpreting the messages issued
by the log collector.

There are also other variables that have a special meaning to the log collector. They have names starting
with ZZ, and are used to control certain diagnostic functions. See the Messages and Problem
Determination book for their description.

You can use these DD names in the job:
DRLIN DD

Specifies the data set that contains log collector language statements. You can use an asterisk (*) to
include the statements directly in the JCL jobstream. It can contain fixed-length or varying-length
records of any length, but the log collector reads a maximum of 72 bytes from each record.

DRLOUT DD
Specifies the data set that will contain messages generated by the log collector. It can have fixed
length or varying-length records of any length, but the log collector assumes a length of at least 80
bytes for formatting. Lines that are no longer than the specified record length are wrapped to the next
line. DRLOUT is allocated as RECFM=F and LRECL=80 if no DCB attributes are specified.

DRLLOG DD
Specifies the log data set you want to process. You can specify concatenated data sets with different
attributes. This statement is required only for log collector statements that process log data. The date
set attributes are determined by the creator of the log.

DRLLSTxDD
Specifies the data sets that will contain output from the LIST RECORD statement. This statement is
required only if you use LIST RECORD.

DRLDUMP DD
Specifies the data set that the log collector will use to write diagnostic information. It can have fixed-
length or varying-length records of any length, but the log collector assumes a length of at least 80
bytes for formatting. Lines that are longer than the specified record length are wrapped to the next
line. DRLDUMP is allocated as RECFM=F and RECL=80 if no DCB attributes are specified.

JCL for the report definition language
Figure 114 on page 188 shows sample JCL you can use when running the report definition language in
batch. (See also DRLJRDEF in DRL190.SDRLCNTL.)

Log and record procedures

Chapter 13. Log and record procedures 187

//*--*
//EPDMRDEF EXEC PGM=IKJEFT01
//STEPLIB DD DISP=SHR,DSN=DRL190.SDRLLOAD
// DD DISP=SHR,DSN=qmfloadlibrary
// DD DISP=SHR,DSN=db2loadlibrary
//SYSPROC DD DISP=SHR,DSN=DRL190.SDRLEXEC
// DD DISP=SHR,DSN=qmfclistlibrary
//SYSEXEC DD DISP=SHR,DSN=qmfexeclibrary
//*--*
//* QMF allocations *
//*--*
//DSQDEBUG DD DUMMY
//DSQUDUMP DD DUMMY
//DSQPNLE DD DISP=SHR,DSN=QMFDSQPNLxlibrary
//DSQSPILL DD DSN=&&SPILL,DISP=(NEW,DELETE),UNIT=SYSDA,
// SPACE=(CYL,(1,1),RLSE),DCB=(RECFM=F,LRECL=4096,BLKSIZE=4096)
//DSQEDIT DD DSN=&&EDIT,UNIT=SYSDA,SPACE=(CYL,(1,1),RLSE),
// DCB=(RECFM=FBA,LRECL=79,BLKSIZE=4029)
//DSQPRINT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//ADMGGMAP DD DISP=SHR,DSN=ADMGGMAPlibrary
//ADMCFORM DD DISP=SHR,DSN=ADMCFORMlibrary
//DSQUCFRM DD DISP=SHR,DSN=DRL190.SDRLFENU
//*--*
//* Performance Reporter allocations *
//*--*
//DRLIN DD DISP=SHR,DSN=DRL190.SDRLRENU(DRLOSAMP)
// DD DISP=SHR,DSN=DRL190.SDRLRENU(DRLORACF)
//DRLOUT DD SYSOUT=*
//DRLDEFS1 DD DISP=SHR,DSN=DRL.LOCAL.DEFS
//DRLDEFS2 DD DISP=SHR,DSN=DRL190.SDRLRENU
//DRLDEFS3 DD DISP=SHR,DSN=
//*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 %DRLERDEF SYSTEM=DSN SYSPREFIX=DRLSYS PREFIX=DRL -
 MODE=BATCH SHOWINPUT=YES

Figure 114. JCL for defining reports in batch

You can use these DD names in the job:
DRLIN DD

Specifies the input data set that contains report definition language statements. You can use an
asterisk (*) to include the report definition language statements directly in the JCL jobstream.

DRLOUT DD
Specifies the data set that will contain messages generated during processing by IBM Z Decision
Support.

DRLDEFS1, DRLDEFS2, DRLDEFS3 DD
Specifies the data sets containing the QMF queries and forms defined in the report definition
statements. DRLDEFS1 is searched first and must exist. The DRLDEFS2 and DRLDEFS3 data sets are
optional and are searched only if a defined query or form is not found in DRLDEFS1.

Reporting definition language exec
The reporting definition language uses an exec called DRLERDEF to process report definition language
statements. You can specify these parameters for the DRLERDEF exec:
SYSTEM=db2-system

db2-system is the name of the Db2 subsystem that manages the Db2 tables that make up the IBM Z
Decision Support database. The default name is DSN.

SYSPREFIX=sysprefix
sysprefix identifies the prefix (owner) of the system tables. The default is DRLSYS.

PREFIX=prefix
prefix identifies the prefix (owner) of the queries and forms that are imported to QMF during IBM Z
Decision Support report definition processing. The default is DRL.

SHOWINPUT=YES/NO
Specifies whether the statements read from the input file (determined from DRLIN) are written to the
output message file (determined by DRLOUT).

Log and record procedures

188 IBM Z Decision Support : Language Guide and Reference

MODE=BATCH/ONLINE
Specifies how the processing is to occur. MODE=BATCH must be specified when you wish to process
IBM Z Decision Support report definition statements in batch.

SHOWSQL YES/NO
The SHOWSQL parameter specifies whether SQL statements should be shown (for debugging).

QMF=YES/NO
The QMF parameter specifies whether QMF is used.

Log and record procedures

Chapter 13. Log and record procedures 189

Log and record procedures

190 IBM Z Decision Support : Language Guide and Reference

Appendix A. Support information

If you have a problem with your IBM software, you want to resolve it quickly. IBM provides a number of
ways for you to obtain the support you need.

• Searching knowledge bases: You can search across a large collection of known problems and
workarounds, Technotes, and other information.

• Obtaining fixes: You can locate the latest fixes that are already available for your product.
• Contacting IBM Software Support: If you still cannot solve your problem, and you need to work with

someone from IBM, you can use a variety of ways to contact IBM Support.

Contacting IBM Support
This topic describes how to contact IBM Support if you have been unable to resolve a problem with IBM Z
Decision Support.

Before contacting IBM Support, your company must have an active IBM software maintenance contract,
and you must be authorized to submit problems to IBM. The type of software maintenance contract that
you need depends on the type of product you have. For more information, refer to the IBM Support
website at the following links:

IBM Support
https://www.ibm.com/mysupport/s/

IBM Z Support
https://www.ibm.com/support/pages/ibm-enterprise-support-and-preferred-care-options-ibm-z

Z Decision Support
https://www.ibm.com/mysupport/s/topic/0TO0z0000006v25GAA/z-decision-support

To contact IBM Support to report a problem (open a case), follow these steps:

1. Determine the business impact.
2. Describe the problem and gather information.
3. Submit the problem report.

Determining the business impact
When you report a problem to IBM, you are asked to supply a severity level. Therefore, you need to
understand and assess the business impact of the problem that you are reporting. Use the following
criteria:

Severity 1
The problem has a critical business impact. You are unable to use the program, resulting in a critical
impact on operations. This condition requires an immediate solution.

Severity 2
The problem has a significant business impact. The program is usable, but it is severely limited.

Severity 3
The problem has some business impact. The program is usable, but less significant features (not
critical to operations) are unavailable.

Severity 4
The problem has minimal business impact. The problem causes little impact on operations, or a
reasonable circumvention to the problem was implemented.

© Copyright IBM Corp. 1994, 2017 191

https://www.ibm.com/mysupport/s/
https://www.ibm.com/support/pages/ibm-enterprise-support-and-preferred-care-options-ibm-z
https://www.ibm.com/mysupport/s/topic/0TO0z0000006v25GAA/z-decision-support

Describing the problem and gathering information
When describing a problem to IBM, be as specific as possible. Include all relevant background
information so that IBM Support specialists can help you solve the problem efficiently. To save time, know
the answers to the following questions:

• What software versions were you running when the problem occurred?
• Do you have logs, traces, and messages that are related to the problem symptoms? IBM Support is

likely to ask for this information.
• Can you re-create the problem? If so, what steps were performed to re-create the problem?
• Did you make any changes to the system? For example, did you make changes to the hardware,

operating system, networking software, product-specific customization, and so on.
• Are you currently using a workaround for the problem? If so, be prepared to explain the workaround

when you report the problem.

Submitting the problem
You can submit your problem to IBM Support in either of the following ways:
Online

Go to https://www.ibm.com/mysupport/s/, click on Open a case, and enter the relevant details into
the online form.

By email or phone
For the contact details in your country, go to the IBM Support website at https://www.ibm.com/
support/. Look for the tab on the right and click Contact and feedback > Directory of worldwide
contacts for a list of countries by geographic region. Select your country to find the contact details for
general inquiries, technical support, and customer support.

If the problem you submit is for a software defect or for missing or inaccurate documentation, IBM
Support creates an Authorized Program Analysis Report (APAR). The APAR describes the problem in
detail. Whenever possible, IBM Support provides a workaround that you can implement until the APAR is
resolved and a fix is delivered. IBM publishes resolved APARs on the IBM Support website, so that other
users who experience the same problem can benefit from the same resolution.

192 IBM Z Decision Support : Language Guide and Reference

https://www.ibm.com/mysupport/s/
https://www.ibm.com/support/
https://www.ibm.com/support/

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement might not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

© Copyright IBM Corp. 1994, 2017 193

Such information may be available, subject to appropriate terms and conditions, including in some cases
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurement may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM‘s application programming interfaces.

If you are viewing this information in softcopy form, the photographs and color illustrations might not
display.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. For a current list of IBM trademarks, refer to the Copyright and
trademark information at https://www.ibm.com/legal/copytrade.

194 IBM Z Decision Support : Language Guide and Reference

https://www.ibm.com/legal/copytrade

Bibliography

IBM Z Decision Support publications
The IBM Z Decision Support library contains the following publications and related documents.

The publications are available online in the IBM Knowledge Center at the following link, from where you
can also download the associated PDF:

https://www.ibm.com/support/knowledgecenter/SSH53X_1.9.0

• Administration Guide and Reference, SC27-9055

Provides information about initializing the IBM Z Decision Support database and customizing and
administering IBM Z Decision Support.

• AS/400 System Performance Feature Guide and Reference, SC27-9060

Provides information for administrators and users about collecting and reporting performance data
generated by AS/400 systems.

• CICS Performance Feature Guide and Reference, SC27-9057

Provides information for administrators and users about collecting and reporting performance data
generated by Customer Information Control System (CICS®).

• Distributed Systems Performance Feature Guide and Reference, SC27-9059

Provides information for administrators and users about collecting and reporting performance data
generated by operating systems and applications running on a workstation.

• Guide to Reporting, SC27-9066

Provides information for users who display existing reports, for users who create and modify reports,
and for administrators who control reporting dialog default functions and capabilities.

• IMS Performance Feature Guide and Reference, SC27-9058

Provides information for administrators and users about collecting and reporting performance data
generated by Information Management System (IMS).

• Language Guide and Reference, GI13-4376

Provides information for administrators, performance analysts, and programmers who are responsible
for maintaining system log data and reports.

• Messages and Problem Determination, GC27-9056

Provides information to help operators and system programmers understand, interpret, and respond to
IBM Z Decision Support messages and codes.

• Network Performance Feature Installation and Administration, SC28-3205

Provides information for network analysts or programmers who are responsible for setting up the
network reporting environment.

• Network Performance Feature Reference, SC28-3206

Provides reference information for network analysts or programmers who use the Network Performance
feature.

• Network Performance Feature Reports, SC28-3207

Provides information for network analysts or programmers who use the Network Performance feature
reports.

• Resource Accounting for z/OS, SC28-3208

© Copyright IBM Corp. 1994, 2017 195

https://www.ibm.com/support/knowledgecenter/SSH53X_1.9.0

Provides information for users who want to use IBM Z Decision Support to collect and report
performance data generated by Resource Accounting.

• System Performance Feature Guide, SC27-9061

Provides information for performance analysts and system programmers who are responsible for
meeting the service-level objectives established in your organization.

• System Performance Feature Reference Volume I, SC27-9062

Provides information for administrators and users with a variety of backgrounds who want to use IBM Z
Decision Support to analyze z/OS, z/VM®, zLinux, and their subsystems, performance data.

• System Performance Feature Reference Volume II, SC27-9063

Provides information for administrators and users with a variety of backgrounds who want to use IBM Z
Decision Support to analyze z/OS, z/VM, zLinux, and their subsystems, performance data.

• Usage and Accounting Collector User Guide, SC27-9064

Provides information about the functions and features of the Usage and Accounting Collector.

196 IBM Z Decision Support : Language Guide and Reference

Glossary

 A
administration

A IBM Z Decision Support task that includes maintaining the database, updating environment
information, and ensuring the accuracy of data collected.

administration dialog
A set of host windows used to administer IBM Z Decision Support.

asterisk length
The length of a field that extends to the end of the containing structure.

 C
cascaded update

Occurs during data collection, when information entered in one table is further processed and entered
in another table.

case expression
An expression that specifies a value as being dependent on a given condition.

collect
A process used by IBM Z Decision Support to read data from input log data sets, interpret records in
the data set, and store the data in Db2 tables in the IBM Z Decision Support database.

component
An optionally-installable part of a IBM Z Decision Support feature.Specifically in IBM Z Decision
Support , a component refers to a logical group of objects used to collect log data from a specific
source, to update the IBM Z Decision Support database using that data, and to create reports from
data in the database.

control table
A predefined IBM Z Decision Support table that controls results returned by some log collector
functions.

 D
data table

A IBM Z Decision Support table that contains performance data used to create reports.
 E
environment information

All of the information that is added to the log data to create reports. This information can include data
such as performance groups, shift periods, installation definitions, and so on.

exit anchor
A parameter provided to a log or record procedure. An exit anchor is used upon the first call of the
procedure to store a work area location, which is then used in subsequent calls to that procedure.

 G
grouping value

Value that is used to sort records into groups.
 I
IBM Z Decision Support database

A set of Db2 tables that includes data tables, lookup tables, system tables, and control tables.
 K
key columns

The columns of a Db2 table that together constitute the key.
 L

© Copyright IBM Corp. 1994, 2017 197

log collector
A IBM Z Decision Support program that processes log data sets and provides other IBM Z Decision
Support services.

log collector language
IBM Z Decision Support statements used to supply definitions to and invoke services of the log
collector.

log data set
Any sequential data set that is used as input to IBM Z Decision Support.

log definition
The description of a log data set processed by the log collector.

log procedure
A program module that is used to process all record types in certain log data sets.

lookup expression
An expression that specifies how a value is obtained from a lookup table.

lookup table
A IBM Z Decision Support Db2 table that contains grouping, translation, or substitution information.

 N
nested section

A section of a record that is location within another section.
 P
purge condition

Instruction for purging old data from the IBM Z Decision Support database.
 R
record definition

The description of a record type contained in the log data sets used by IBM Z Decision Support,
including detailed record layout and data formats.

record procedure
A program module that is called to process some types of log records.

record type
The classification of records in a log data set.

repeated section
A section of a record that occurs more than once, with each occurrence adjacent to the previous one.

report definition language
IBM Z Decision Support statements used to define reports and report groups.

report group
A collection of IBM Z Decision Support reports that can be referred to by a single name.

reporting dialog
A set of host or workstation windows used to request reports.

 S
section

A structure within a record that contains one or more fields and may contain other sections.
source

In an update definition, the record or Db2 table that contains the data used to update a IBM Z
Decision Support Db2 table.

system table
A Db2 table that stores information that controls log collector processing, IBM Z Decision Support
dialogs, and reporting.

 T

198 IBM Z Decision Support : Language Guide and Reference

target
In an update definition, the Db2 table in which IBM Z Decision Support stores data from the source
record or table.

 U
update definition

Instructions for entering data into Db2 tables from records of different types or from other Db2 tables.

Glossary 199

200 IBM Z Decision Support : Language Guide and Reference

Index

Special Characters
; 72
*

FIELD function 46
field length 127, 132
field names 15
section occurrences 131
specifying in JCL 186, 188

& 72
% 62

A
accessibility xix
accumulation functions

AVG 143
COUNT 143
FIRST 143
LAST 143
MAX 143
MIN 143
PERCENTILE 143
SUM 142

ADD
FIELDS clause 115
SECTION clause 115

adding rows in a table 32
ALTER

LOG 111
RECORD 22, 113
RECORDPROC 116
UPDATE 59, 117

ampersand 72
AND operator 83
APAR (Authorized Program Analysis Report) 191
APPLY SCHEDULE clause

ALTER UPDATE statement 118
DEFINE UPDATE statement 139

arithmetic operations 79
ASM, LANGUAGE 127, 137, 175
ASML, LANGUAGE 127, 137, 176
assembler, log/record procedure 175
asterisk

FIELD function 46
field length 127, 132
field names 15
section occurrences 131
specifying in JCL 186, 188

ATTRIBUTES clause 170
Authorized Program Analysis Report (APAR) 191
availability, resource

calculating actual 50
comparing actual to scheduled 55

averages, determining 47
AVG accumulation function 143

B
batch

collecting log data in 12
generating reports 165
sample JCL 186, 187
storing report definition language statements 164

BATCH clause 169
block comments 70
books for IBM Z Decision Support 195
BUFFER SIZE clause

COLLECT statement 123
LIST RECORD statement 151
using 63

BUILT BY clause
ALTER RECORD statement 114
DEFINE RECORD statement 130

C
C language, log/record procedure 177
C, LANGUAGE 127, 137, 177
cascaded update definitions 29
case expressions 83
CHAR function 91
character

description 67
string

constant 166
data type 73

chart
definition 164
sample 162

CHART clause 164, 170
COLLECT statement 119
collecting log data

committing changes to Db2 table 62
from partially-processed logs 63
in batch 12
including/excluding tables 61
log collector language statement 119
more than once 63
online 13
overview 1

COMMENT ON statement 124
comments 69, 166
COMMIT AFTER clause

COLLECT statement 123
using 62

concatenation, string 81
conditions 89
constants 68, 166
CONTINUOUSLY FROM clause

COLLECT statement 121
conventions

typeface xx
COUNT accumulation function 143

Index 201

CURRENT
DATE 77
TIME 77
TIMESTAMP 77

customer support
contacting IBM Support 191

D
data

accessing
nested sections 43
record stems 38
repeated sections 38
sections, overview 43

managing
collecting data 61
correcting data in a table 32
deleting and adding rows in a table 32
deleting data in a table 31

data tables
cascaded updates 29
creating 7, 25
maintaining 2
managing data in

correcting data 32
deleting and adding rows 32
deleting data 31
modifying data 32

storing data from multiple sources in single table 25
data types

comparisons between 81
overview 73

date
data type 74
incrementing/decrementing 80
string 77

DATE function 91
DATE, CURRENT 77
DAY function 92
DAYS function 92
DAYTYPE function 93
Db2 tables

cascaded updates 29
managing data in

correcting data 32
deleting and adding rows 32

naming conventions 71
retrieving data from 144
rules for storing data in 145
storing data

from multiple sources to single data table 25
in multiple data tables 28

defaults, using to write record definitions 15
DEFINE

GROUP 163, 167
LOG

example 7
log collector statement 125
using HEADER clause 64

multiple record types 18
nested sections 42
PURGE 31, 128
RECORD

DEFINE (continued)
RECORD (continued)

defaults 15
example 7

RECORDPROC
using 173

repeated sections 36
REPORT 163, 168
sections 16
UPDATE 47

DEFINE RECORD
log collector statement 129

DEFINE RECORDPROC
log collector statement 136

defining
cascaded updates 29
logs

example 7
log collector statement 125
using HEADER clause 64

multiple record types 18, 20
records

defaults 15
example 7
log collector statement 129
multiple record types 18
nested sections 42
repeated sections 36
sections 16

updates
for records with repeated sections 37
general discussion 8

definition statements, log collector language
ALTER LOG 111
ALTER RECORD

description 113
using 22

ALTER RECORDPROC 116
ALTER UPDATE 117
COMMENT ON 124
DEFINE LOG

description 125
example 7
using HEADER clause 64

DEFINE PURGE 128
DEFINE RECORD

defaults 15
example 7
log collector statement 129
multiple record types 18
nested sections 42
repeated sections 36
sections 16

DEFINE RECORDPROC
using 173

DEFINE UPDATE 138
DROP 21, 145
GENERATE INDEX 146
GENERATE PARTITIONING 147
LIST RECORD 148
SET 158

DELETE
FIELD clause 115
FROM clause 157

202 IBM Z Decision Support : Language Guide and Reference

DELETE (continued)
SECTION clause 115

deleting data from tables
DEFINE PURGE statement 128
deleting rows 32
PURGE statement 153

delimited word 67
delimiter 69
DESC clause

DEFINE GROUP statement 167
DEFINE REPORT statement 169
using 163

diagrams, syntax 65
DIGITS function 95
DISTRIBUTE clause

ALTER UPDATE statement 118
DEFINE UPDATE statement 49, 140

DISTRIBUTE TO clause
COLLECT statement 121

distributing measurements 49
documentation

IBM Z Decision Support 195
DRLERDEF exec 188
DROP

GROUP 170
REPORT 171

durations, labeled 78

E
elements

log collector
characters 67
comments 69
identifiers 71
input lines 69
processing of 70
statements 72
table names 71
tokens 67
variables 72

report definition language
character string constant 166
comments 166
identifiers 165
input format 165

error handling 75
EXCLUDE clause

COLLECT statement 121
PURGE statement 154
using 61

exec, report definition language 188
expressions

case 83
log collector language 73
lookup 85
overview 87

F
field

format
list 132–135

field (continued)
format (continued)

specifying 16
length 16
name 15
offset 15

FIELD clause 125
FIELD function 95
FIELDS clause

DEFINE RECORD statement 131
LIST RECORD statement 150

FILE clause
DEFINE REPORT statement 170
LOGSTAT statement 153

FIRST accumulation function 143
FIRST RECORD clause

ALTER LOG statement 112
DEFINE LOG statement 127
using 64

FLOAT function 96
floating-point

constant 68
data type 73

FOR clause
ALTER RECORDPROC statement 116
DEFINE RECORDPROC statement 137

FORM clause 169
form, QMF 163
format

format, field 16
input

log collector language 69
report definition language 165

FORMAT clause 151
FROM clause

COLLECT statement 121
DEFINE PURGE statement 128
DEFINE UPDATE statement 138
RECALCULATE statement 156

function
accumulation

AVG 143
COUNT 143
FIRST 143
LAST 143
MAX 143
MIN 143
PERCENTILE 143
SUM 142

CHAR 91
DATE 91
DAY 92
DAYS 92
DAYTYPE 93
DIGITS 95
FIELD 95
FLOAT 96
GETVAR 96
HOUR 97
INTEGER 97
INTERVAL 98
IPCONV 98
LENGTH 99
MICROSECOND 100

Index 203

function (continued)
MINUTE 100
MONTH 101
PERIOD 101
ROUND 103
SECOND 104
SECTNUM 105
SUBSTR 105
TIME 106
TIMESTAMP 106
TRANSLATE 107
VALUE 108
WORD 108
YEAR 109

G
GDDM-ICU format 164, 170
GENERATE INDEX 146
GENERATE PARTITIONING 147
GENERATE TABLESPACE 147
GETVAR function 96
glossary 197
graphic report

definition 164
sample 162

GROUP BY clause 8
group definitions, writing 163
GROUPS clause 170
GROWTH, table space type 147

H
HEADER clause

ALTER LOG statement 112
DEFINE LOG statement 126
using 64

HOUR function 97

I
IBM Support 191
IDENTIFIED BY clause

ALTER RECORD statement 114
DEFINE RECORD statement 130

identifier
log collector language 71
report definition language 165

in bytes 158
IN LOG clause

ALTER RECORD statement 114
DEFINE RECORD statement 130

INCLUDE clause
COLLECT statement 121
PURGE statement 154
using 61

infix operator 79
input format

log collector language 69
report definition language 165

INSERT INTO clause 157
integer

constant 68

integer (continued)
data type 73

INTEGER function 97
INTERVAL function 98
invalid data 74
IPCONV function 98
IS clause 125

J
JCL

log collector language
executing statements 10
sample 186

report definition language
executing DRLERDEF 188
sample 187
storing definitions 164

L
labeled durations 78
LANGUAGE ASM 127, 137, 175
LANGUAGE ASML 127, 137, 176
LANGUAGE C 127, 137, 177
LANGUAGE clause

in ALTER LOG statement 112
in ALTER RECORDPROC statement 116
in DEFINE LOG statement 127
in DEFINE RECORDPROC statement 137

LAST accumulation function 143
LAST RECORD clause

ALTER LOG statement 112
DEFINE LOG statement 127
using 64

LENGTH function 99
length, field 16
LET clause

ALTER UPDATE statement 119
DEFINE UPDATE statement 141

LIKE operator 82
line comments 69
LIST RECORD 148
LISTFILE clause 151
LOG clause

COMMENT ON statement 124
DROP statement 145

log collector
how to use 5
introduction 1
parameters 186

log collector language statement
ALTER LOG 111
ALTER RECORD

description 113
using 22

ALTER RECORDPROC 116
ALTER UPDATE 117
COLLECT 119
COMMENT ON 124
DEFINE LOG

description 125
example 7

204 IBM Z Decision Support : Language Guide and Reference

log collector language statement (continued)
DEFINE LOG (continued)

using HEADER clause 64
DEFINE PURGE 128
DEFINE RECORD

defaults 15
example 7

DEFINE RECORDPROC
using 173

DEFINE UPDATE 47, 138
description 129
DROP 145
GENERATE INDEX 146
GENERATE PARTITIONING 147
GENERATE TABLESPACE 147
LIST RECORD 148
LOGSTAT 152
multiple record types 18
nested sections 42
PURGE 153
RECALCULATE 155
repeated sections 36
sections 16
SET 158

log data
collecting 1
collecting from partially-processed logs 63
collecting more that once 63
controlling data collection

DEFINE LOG statement 64
EXCLUDE clause of COLLECT statement 61
INCLUDE clause of COLLECT statement 61

listing 1
log definition

changing 111
online storing 13
writing 7

log procedure
calling 174
changing 112
creating 127
interface specifications 175
parameters 175, 177, 178
using 173

log processing statements
COLLECT 61, 119
GENERATE TABLESPACET 147
LOGSTAT 152

LOGFILE clause 151
LOGPROC clause

ALTER LOG statement 112
DEFINE LOG statement 127
using 173

LOGSTAT statement 152
long identifier 165
lookup expressions 85

M
manuals

IBM Z Decision Support 195
mathematical operators

overview 79
precedence (conditions) 89

mathematical operators (continued)
precedence (expressions) 89

MAX accumulation function 143
measurements, distributing 49
MERGE clause

ALTER UPDATE statement 119
DEFINE UPDATE statement 144

MICROSECOND function 100
MIN accumulation function 143
MINUTE function 100
missing data 74
missing or invalid 74
MONTH function 101
multiple record types, defining 20
multiple sources data in single data tables, storing 25

N
name, field 15
nested sections within records

accessing data in 43
defining a record within 42
overview 39

NOT operator 83
null value

handling 74
testing for 83

numeric
constants 68
data types 73

O
offset, field 15
ON OVERFLOW clause

COLLECT statement 124
LIST RECORD statement 152
using 63

ON TIMESTAMP OVERLAP SKIP clause, ON TIMESTAMP
OVERLAP SKIP statement 121
ON TIMESTAMP OVERLAP STOP clause, ON TIMESTAMP
OVERLAP STOP statement 122
online

collecting log data, verifying definitions 13
storing report definition language statements 165
verifying record definitions 13

operations
arithmetic 79
logical 83

operators, mathematical
overview 79
precedence (conditions) 89
precedence (expressions) 89

OR operator 83
ORDER BY clause 151
OWNER clause

DEFINE GROUP statement 167
DEFINE REPORT statement 169
DROP GROUP statement 171
DROP REPORT statement 171

Index 205

P
PARM clause

ALTER RECORDPROC statement 116
DEFINE RECORDPROC statement 137

partially-processed logs, collecting data from 63
PARTITION clause, COLLECT statement 122
pattern matching 82
PERCENTILE accumulation function 143
percentiles, determining 47
PERIOD function 101
prefix operator 79
problem determination, IBM Support

determining business impact 191
procedure

assembler example 175
C example 177
log

calling 174
changing 112
creating 127
interface specifications 175
using 173

record
calling 174
changing 116
interface specifications 175
using 173

publications
IBM Z Decision Support 195

PURGE
FROM clause 146
statement 153

Q
QMF

query/form, creating 163
QUERY clause 169
query, QMF 163

R
RANGE, table space type 147
RECALCULATE statement 32, 155
RECORD clause

COMMENT ON statement 124
DROP statement 146

record definition
changing

ALTER RECORD statement 22
DROP statement 21

defining
example 7
nested sections 42
repeated sections 36
sections 17
using defaults 15

storing 10
verifying 11

record procedure
calling 174
changing 116

record procedure (continued)
creating 136
interface specifications 175
parameters 175, 177, 178
using 173

record types, multiple 20
RECORDPROC clause

COMMENT ON statement 125
DROP statement 146

repeated sections within records
accessing data 43
defining records for 36
defining updates for

accessing data from sections 38
accessing data from the source records 38

general discussion 36
how the log collector processes 43

report
definition language statements

DEFINE GROUP 167
DEFINE REPORT 168
DROP GROUP 170
DROP REPORT 171

definition, writing 163
graphic

definition 164
sample 162

JCL
executing DRLERDEF 188
sample 187

tabular
definitions 163
sample 162

report definition language
elements

character string constants 166
input format 165

getting started with
general discussion 162
QMF forms/queries, creating 163

group definitions, writing 163
introduction 161
JCL

executing DRLERDEF 188
sample 187
storing definitions 164

parameters 186
statements

DEFINE GROUP 167
DEFINE REPORT 168
DROP GROUP 170
DROP REPORT 171

storing definition statements
in batch 164
online 165

REPROCESS clause
COLLECT statement 121
using 63

resource availability
calculating actual 50
comparing actual to scheduled 55
general discussion 50

ROUND function 103

206 IBM Z Decision Support : Language Guide and Reference

S
SECOND function 104
SECTION clause

ALTER RECORD statement 115
ALTER UPDATE statement 118
DEFINE RECORD statement 130
DEFINE UPDATE statement 138
LIST RECORD statement 150

section occurrence number, obtaining 46
sections within a record

accessing data
general discussion 43
obtaining a section occurrence number 46
specific sections 46

defining nested 39
defining records for 17
general discussion 16
repeated 36

SECTNUM function 105
semi-colon 72
SET clause

ALTER UPDATE statement 119
DEFINE UPDATE statement 142
using 9

SET statement 158
severity

contacting IBM Support 191
determining business impact 191

short identifier 166
specific sections in records, accessing 46
statements

log collector
ALTER LOG 111
ALTER RECORD 22, 113
ALTER RECORDPROC 116
ALTER UPDATE 117
COLLECT 119
COMMENT ON 124
DEFINE LOG 64, 125
DEFINE PURGE 128
DEFINE RECORD 129
DEFINE RECORDPROC 136
DEFINE UPDATE 138
GENERATE TABLESPACE 147
LIST RECORD 148
LOGSTAT 152
PURGE 153
RECALCULATE 155
SET 158

report definition language
DEFINE GROUP 167
DEFINE REPORT 168
DROP GROUP 170
DROP REPORT 171
general discussion 166

statistics, data collection 68
storing

data from multiple sources in single data tables 25
data in multiple tables 28
definitions on-line 13
definitions, general discussion 10
update definitions 10

string

string (continued)
concatenation 81
constants 166
data type 73
date/time 77
matching with a pattern 82

SUBSTR function 105
SUM accumulation function 142
Support

contacting IBM 191
describing problems 191
determining business impact 191
submitting problems 191

support information 191
syntax diagrams, overview 65

T
table maintenance statements

PURGE 153
RECALCULATE 155

table space, generate 147
tables

cascaded updates 29
managing data in

correcting data 32
deleting and adding rows 32

naming conventions 71
retrieving data from 144
rules for storing data in 145
storing data

from multiple sources to single data table 25
in multiple data tables 28

tabular report
definition 163
sample 162

terms, list of 197
time

data type 74
incrementing/decrementing 81
string 77

TIME
CURRENT 77
function 106

TIMESTAMP
clause

ALTER LOG statement 112
ALTER UPDATE statement 127
DEFINE LOG statement 127
DEFINE UPDATE statement 141
using 64

CURRENT 77
function 106
incrementing/decrementing 81

timestamp data type 74
TO clause 139
tokens 67
TRANSLATE function 107
truth value

applying operators to a 83
data type 74
unknown 75

TYPE clause 169
typeface conventions xx

Index 207

U
unknown truth value 75
UPDATE clause

COMMENT ON statement 125
DROP statement 146
RECALCULATE statement 157

update definitions
averages, determining 47
changing

ALTER UPDATE statement 59
DROP statement, deleting with 58

creating cascaded 29
GROUP BY clauses 8
measurement, distributing 49
nested sections within records

accessing data in 43
defining records with 42
general discussion 39

percentiles, determining 47
repeated sections within records

defining records for 36
defining updates for 37
general discussion 36
how the log collector processes 43

resource availability, determining
calculating actual availability 50
comparing actual to scheduled 55
general discussion 50

SET clauses 9
storing 10
writing

records with repeated sections 37
storing data in multiple data tables 29
storing multiple source data in single data tables 26

USER keyword 77
using

ALTER UPDATE statement 119
DEFINE UPDATE statement 141
LIST statement 150

V
value

comparing a 81
null

handling 74
testing for 83

obtaining a 76
specifying a 75
truth

applying operators to a 83
data type 74
unknown 75

VALUE function 108
variable

obtaining a value from 76
overview 72
specifying in JCL 186
stack, C language 177

VARIABLES clause 170
verifying record definitions

general discussion 11
online 13

VERSION clause
in DEFINE GROUP statement 167
in DEFINE LOG statement 126
in DEFINE PURGE statement 128
in DEFINE RECORD statement 137
in DEFINE RECORDPROC statement 130
in DEFINE REPORT statement 169
in DEFINE UPDATE statement 138

W
WHERE clause

ALTER UPDATE statement 118
COLLECT statement 121
DEFINE PURGE statement 128
DEFINE UPDATE statement 139
LIST RECORD statement 150

word
definition of 67
delimited 67

WORD function 108

Y
YEAR function 109

208 IBM Z Decision Support : Language Guide and Reference

IBM®

GI13-4376-02

	Contents
	Figures
	Tables
	Preface
	Who should read this book
	What this book contains
	Accessing publications online
	Accessibility
	Support information
	Conventions used in this book
	Typeface conventions

	Programming Interfaces Information
	What's new this edition (March 2021)

	Chapter 1. Introduction to the log collector
	Collecting log data
	Listing log data
	Maintaining data tables
	Maintaining definitions
	Ready-made definitions

	Summary of log collector statements

	Chapter 2. How to use the log collector language
	Defining a log
	Defining a record
	Creating a data table
	Defining an update
	Understanding the GROUP BY clause
	Understanding the SET clause

	Performing log collector statements
	Verifying record definitions

	Collecting log data
	Collecting log data in batch
	Collecting log data online

	Chapter 3. Defining logs and records
	Learning more about writing record definitions
	Defining sections within a record
	Defining a record containing a section

	Defining multiple record types
	Defining the records

	Changing log and record definitions
	Using the DROP statement to delete a record definition
	Using the ALTER RECORD statement

	Chapter 4. Updating, storing, and managing data in tables
	Storing data from multiple sources in a single data table
	Creating the data table
	Writing the update definition

	Storing data in multiple data tables
	Defining a cascaded update
	Creating the summary data table
	Defining an update for the summary table

	Managing data within tables
	Deleting data
	Changing data within tables
	Correcting data
	Deleting and adding rows

	Chapter 5. Defining update definitions
	Using repeated sections within records
	Defining a record with a repeated section
	Defining updates for records with repeated sections
	Accessing data from the record stem
	Accessing data from repeated sections

	Using nested sections within records
	Defining a record with nested sections
	Accessing data in nested sections

	Understanding how to access data from records with sections
	Obtaining a section occurrence number
	Accessing specific sections in a record

	Determining averages
	Determining percentiles
	Distributing measurements
	Determining resource availability
	Understanding the MERGE clause
	Comparing actual availability to scheduled availability
	Understanding the APPLY SCHEDULE clause

	Changing and deleting update definitions
	Using the DROP statement to delete an update definition
	Using the ALTER UPDATE statement

	Chapter 6. Collecting log data
	Controlling data collection
	Limiting the collection to certain records
	Including and excluding data tables
	Including or excluding groups of tables

	Controlling when a COMMIT is made
	Controlling buffer size
	Handling table row overflows

	Collecting data more than once
	Collecting data from partially processed logs

	Verifying log data sets during data collection

	Chapter 7. How to read the syntax diagrams
	Chapter 8. Elements of the log collector language
	Characters
	Tokens
	Words
	Examples

	Delimited words
	Examples

	String constants
	Examples

	Integer constants
	Examples

	Floating-point constants
	Examples

	Delimiters

	Input lines
	Example

	Comments
	Line comments
	Examples

	Block comments
	Example

	How your text is processed
	Example

	Identifiers
	Table names
	Example

	Statements
	Using variables to modify your text

	Chapter 9. Values and expressions
	Data types
	Integers
	Floating-point numbers
	Character strings
	Dates
	Times
	Timestamps
	Truth values

	Missing and invalid data
	Null value
	Unknown truth value
	Error handling

	Some simple ways of specifying a value
	Specifying a value explicitly
	Specifying a value using an identifier
	Obtaining the value of a variable
	Obtaining the current date and time
	Obtaining the user ID

	Date/time strings
	DATE function
	Automatic conversions

	Labeled durations
	Examples

	Using operators
	Arithmetic operations
	Examples
	Examples

	Incrementing and decrementing date/time values
	Examples

	Concatenation of strings
	Example

	Comparisons
	Examples

	Pattern matching
	Examples
	Examples

	Logical operations

	Testing for null
	Examples

	Case expressions
	Examples

	Lookup expressions
	How the result is obtained
	Which is the most specific pattern
	Example A
	Example B

	Important

	Expressions
	Precedence of operators

	Conditions
	Precedence of operators

	Chapter 10. Functions
	CHAR
	Syntax
	Result
	Example

	DATE
	Syntax
	Result
	Example

	DAY
	Syntax
	Result
	Example

	DAYS
	Syntax
	Result
	Example
	Usage notes

	DAYTYPE
	Syntax
	Result
	Example

	DIGITS
	Syntax
	Result
	Example

	FIELD
	Syntax
	Result
	Example

	FLOAT
	Syntax
	Result
	Example

	GETVAR
	Syntax
	Result
	Example

	HOUR
	Syntax
	Result
	Example

	INTEGER
	Syntax
	Result
	Example

	INTERVAL
	Syntax
	Result
	Example

	IPCONV
	Syntax
	Result
	Example

	LENGTH
	Syntax
	Result
	Example

	MICROSECOND
	Syntax
	Result
	Example

	MINUTE
	Syntax
	Result
	Example

	MONTH
	Syntax
	Result
	Example

	PERIOD
	Syntax
	Result
	Example

	ROUND
	Syntax
	Result
	Example
	Usage notes

	SECOND
	Syntax
	Result
	Example

	SECTNUM
	Syntax
	Result
	Example

	SUBSTR
	Syntax
	Result
	Example

	TIME
	Syntax
	Result
	Example

	TIMESTAMP
	Syntax
	Result
	If only one argument is specified
	If both arguments are specified

	Example

	TRANSLATE
	Syntax
	Result
	Example

	VALUE
	Syntax
	Result
	Example

	WORD
	Syntax
	Result
	Example

	YEAR
	Syntax
	Result
	Example

	Chapter 11. Log collector language statements
	ALTER LOG
	Syntax
	Parameters
	Examples
	Usage

	ALTER RECORD
	Syntax
	Parameters
	Examples
	Usage

	ALTER RECORDPROC
	Syntax
	Parameters
	Examples
	Usage

	ALTER UPDATE
	Syntax
	Parameters
	Examples
	Usage

	COLLECT
	Syntax
	Parameters
	Examples
	Usage

	COMMENT ON
	Syntax
	Parameters
	Examples
	Usage

	DEFINE LOG
	Syntax
	Parameters
	Examples

	DEFINE PURGE
	Syntax
	Parameters
	Examples
	Usage

	DEFINE RECORD
	Syntax
	Parameters
	Examples
	Usage

	DEFINE RECORDPROC
	Syntax
	Parameters
	Examples

	DEFINE UPDATE
	Syntax
	Parameters
	Examples
	APPLY SCHEDULE clause
	DISTRIBUTE clause
	LET clause
	GROUP BY clause
	SET clause
	MERGE clause
	How data is obtained from Db2 tables
	How data is stored in Db2 tables

	DROP
	Syntax
	Parameters
	Examples

	GENERATE INDEX
	Syntax
	Parameters
	Example

	GENERATE PARTITIONING
	Syntax
	Parameters
	Example

	GENERATE TABLESPACE
	Syntax
	Parameters
	Example

	LIST RECORD
	Syntax
	Parameters
	Examples

	LOGSTAT
	Syntax
	Parameters
	Example

	PURGE
	Syntax
	Parameters
	Example
	Usage

	RECALCULATE
	Syntax
	Parameters
	Example
	Usage

	SET
	Syntax
	Parameters
	Examples
	Usage

	Chapter 12. Report definition language guide
	Introducing the report definition language
	Implementing the report definition language
	Getting started with the report definition language
	Creating a QMF query and form

	Writing a group definition
	Writing a report definition
	Writing a definition for a tabular report
	Writing a definition for a graphic report

	Storing report definitions
	Storing definitions in batch

	Generating reports

	Report definition language elements
	Input format
	Identifiers
	Comments

	Character string constants

	Report definition language statements
	DEFINE GROUP
	DEFINE REPORT
	DROP GROUP
	DROP REPORT

	Chapter 13. Log and record procedures
	Specifying log and record procedures
	Calling log and record procedures
	Calling assembler procedures
	Using LANGUAGE ASM interface
	Using LANGUAGE ASML interface

	Calling C procedures
	Using LANGUAGE C interface

	Example log procedures
	Example C log procedure
	Example Assembler log procedure

	Specifying JCL and parameters
	JCL for the log collector language
	JCL for the report definition language
	Reporting definition language exec

	Appendix A. Support information
	Contacting IBM Support

	Notices
	Trademarks

	Bibliography
	IBM Z Decision Support publications

	Glossary
	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

